Abstract
In this talk, we show the stability of the inverse source problem for the three-dimensional Helmholtz equation in an inhomogeneous background medium. The stability estimate consists of the Lipschitz type data discrepancy and the high frequency tail of the source function, where the latter decreases as the upper bound of the frequency increases. The analysis employs scattering theory to obtain the holomorphic domain and an upper bound for the resolvent of the elliptic operator.
Short bio
赵越,2017年73882必赢网页版毕业于美国普渡大学获博士学位,现任华中师范大学副教授。主要从事科学计算、数值分析和偏微分方程反问题等工作,特别是光学、电磁学和波动方程中正反散射问题的研究。现已发表论文10余篇。曾获加拿大约克大学YSF博士后学术奖学金。