研究领域
偏微分方程,数学物理
教育背景
2019年73882必赢网页版,索邦大学,获数学哲学博士学位
2017年73882必赢网页版,延世大学,获数学硕士学位
2014年73882必赢网页版,中国海洋大学,获理学学士学位
工作经历
2022年73882必赢网页版3月至今,南方科技大学,助理教授
2020年73882必赢网页版1月至2022年73882必赢网页版2月,复旦大学,博士后
代表作
10. Generically sharp decay for quasilinear wave equations with null condition, with Siyuan Ma, Ma, and Xu Yuan, preprint arXiv:2212.12115 (2022).
9. Global solution to the 3D Dirac–Klein-Gordon system with uniform energy bounds, with Kuijie Li and Xu Yuan, preprint arXiv:2208.14131 (2022), Calc. Var. Partial Differential Equations 62 (2023), no. 5, Paper No. 146, 42 pp.
8. Global Behavior of Small Data Solutions for The 2D Dirac-Klein-Gordon Equations, with Kuijie Li, Yue Ma, and Xu Yuan, preprint arXiv:2205.12000 (2022), to appear in Transactions of the American Mathematical Society.
7. Global Existence and Scattering of the Klein-Gordon-Zakharov System in Two Space Dimensions, with Yue Ma, preprint arXiv:2111.00244 (2021), to appear in Peking Math. J..
6. Hidden structure and sharp asymptotics for the Dirac–Klein-Gordon system in two space dimensions, with Zoe Wyatt, preprint arXiv:2105.13780 (2021), to appear in Annales de l’Institut Henri Poincaré C. Analyse Non Linéaire.
5. The top-order energy of quasilinear wave equations in two space dimensions is uniformly bounded, with Philippe LeFloch, and Zhen Lei, preprint arXiv:2103.07867 (2021), to appear in Fundamental Research.
4. Global solution to the Klein-Gordon-Zakharov equations with uniform energy bounds, preprint arXiv:2101.02927 (2021), SIAM J. Math. Anal. 54 (2022), no. 1, 595–615.
3. Asymptotic Behavior of the Solution to the Klein-Gordon-Zakharov Model in Dimension Two, preprint arXiv:2006.04443, (2020), Communications in Mathematical Physics 384 (2021), no. 1, 587–607.
2. Global solution to the wave and Klein-Gordon system under null condition in dimension two, preprint arXiv:2005.04767, (2020), Journal of Functional Analysis 281 (2021), no. 11, Paper No. 109232, 29 pp.
1. The zero mass problem for Klein-Gordon equations: quadratic null interactions, preprint arXiv:2004.10467, (2020), Forum Math. Sigma 10 (2022), Paper No. e27, 23 pp.
招聘信息
课题组招收博士后,要求勤奋踏实、热爱科研、善于沟通,欢迎对波动方程及相关方向感兴趣的优秀博士加入课题组,有意者请将相关材料发送至邮箱dongsj@sustech.edu.cn
22. Generically sharp decay for quasilinear wave equations with null condition, with Siyuan Ma, Yue Ma, and Xu Yuan, preprint arXiv:2212.12115 (2022).
21. Global solution to the 3D Dirac--Klein-Gordon system with uniform energy bounds, with Kuijie Li and Xu Yuan, preprint arXiv:2208.14131 (2022), Calc. Var. Partial Differential Equations 62 (2023), no. 5, Paper No. 146, 42 pp.
20. Global Behavior of Small Data Solutions for The 2D Dirac-Klein-Gordon Equations, with Kuijie Li, Yue Ma, and Xu Yuan, preprint arXiv:2205.12000 (2022), to appear in Transactions of the American Mathematical Society.
19. Asymptotic behavior of 2D Wave-Klein-Gordon coupled system under null condition, with Yue Ma and Xu Yuan, preprint arXiv:2202.08139 (2022), Bull. Sci. Math. 187 (2023), Paper No. 103313.
18. Revisit of the Faddeev Model in Dimension Two, with Zhen Lei, Chin. Ann. Math. Ser. B 43, 797–818 (2022) .
17. Global Existence and Scattering of the Klein-Gordon-Zakharov System in Two Space Dimensions, with Yue Ma, preprint arXiv:2111.00244 (2021), to appear in Peking Math. J..
16. Global solution to the cubic Dirac equation in two space dimensions, with Kuijie Li, preprint arXiv:2111.04048 (2021), J. Differential Equations 331 (2022), 192–222.
15. Hidden structure and sharp asymptotics for the Dirac--Klein-Gordon system in two space dimensions, with Zoe Wyatt, preprint arXiv:2105.13780 (2021), to appear in Annales de l’Institut Henri Poincaré C. Analyse Non Linéaire.
14. The top-order energy of quasilinear wave equations in two space dimensions is uniformly bounded, with Philippe LeFloch and Zhen Lei, preprint arXiv:2103.07867 (2021), to appear in Fundamental Research.
13. Stability of some two dimensional wave maps, with Zoe Wyatt, preprint arXiv:2103.05318 (2021), to appear in Differential and Integral Equations.
12. Global solution to the Klein-Gordon-Zakharov equations with uniform energy bounds, preprint arXiv:2101.02927 (2021), SIAM Journal on Mathematical Analysis 54 (2022), no. 1, 595–615.
11. Two dimensional wave--Klein-Gordon equations with semilinear nonlinearities, with Zoe Wyatt, preprint arXiv:2011.11990 (2020), NoDEA Nonlinear Differential Equations Appl. 30 (2023), no. 5, Paper No. 59, 32 pp.
10. Asymptotic Behavior of the Solution to the Klein-Gordon-Zakharov Model in Dimension Two, preprint arXiv:2006.04443, (2020), Communications in Mathematical Physics 384 (2021), no. 1, 587–607.
9. Global solution to the wave and Klein-Gordon system under null condition in dimension two, preprint arXiv:2005.04767, (2020), Journal of Functional Analysis 281 (2021), no. 11, Paper No. 109232, 29 pp.
8. The zero mass problem for Klein-Gordon equations: quadratic null interactions, preprint arXiv:2004.10467, (2020), Forum of Mathematics, Sigma 10 (2022), Paper No. e27, 23 pp.
7. Stability of a wave and Klein-Gordon system with mixed coupling, preprint arXiv:1912.05578, (2019), to appear in Tohoku Mathematical Journal.
6. Stability of a class of semilinear waves in 2+1 dimension under null condition, preprint arXiv:1910.09828, (2019).
5. Stability of Quasilinear Waves in 1+1 Dimension Under Null Condition, (2019), Journal of Dynamics and Differential Equations 33 (2021), no. 2, 961–970.
4. The zero mass problem for Klein-Gordon equations, preprint arXiv:1905.08620, (2019), Commun. Contemp. Math. 25 (2023), no. 7, Paper No. 2250029, 20 pp.
3. Global evolution of the U(1) Higgs Boson: nonlinear stability and uniform energy bounds, with Philippe G. LeFloch and Zoe Wyatt, preprint arXiv:1902.02685, (2019), Annales Henri Poincare 22 (2021), no. 3, 677–713.
2. The finite volume method on a Schwarzschild background, with Philippe G. LeFloch, preprint arXiv:1901.10973, (2019), ESAIM Math. Model. Numer. Anal. 53 (2019), no. 5, 1459–1476.
1. Stability of a coupled wave-Klein-Gordon system with quadratic nonlinearities, with Zoe Wyatt, preprint arXiv:1811.10022, (2018), Journal of Differential Equations 269 (2020), no. 9, 7470–7497.