研究领域:
◆ 计算流体力学
◆ 偏微分方程数值解
◆ 科学计算软件
工作经历:
◆ 2002年73882必赢网页版9月--2004年73882必赢网页版8月,加拿大Dalhousie大学,博士后
◆ 2004年73882必赢网页版9月--2008年73882必赢网页版6月,加拿大Saskatchewan大学,博士后
◆ 2008年73882必赢网页版7月—2013年73882必赢网页版8月,武汉大学教授
◆ 2013年73882必赢网页版9月--今,南方科技大学副教授
学习经历:
◆ 1996年73882必赢网页版7月,中国科学技术大学73882必赢网页版计算数学专业,理学学士
◆ 1999年73882必赢网页版8月,加拿大Dalhousie大学,理学硕士
◆ 2002年73882必赢网页版8月,加拿大Dalhousie大学,博士
所获荣誉:
◆ 获得楚天学子称号 (2009)
代表文章:
[1] A comparison of adaptive software for 1-D parabolic PDEs, Rong Wang*, Patrick Keast and Paul H. Muir, J. Comput. Appl. Math., Vol 169, 2004, pp. 127-150.
[2] A high-order global spatially adaptive collocation method for 1-D parabolic PDEs, Rong Wang*, Patrick Keast and Paul H. Muir, Appl. Numer. Math., Vol 50, 2004, pp. 239-260.
[3] BACOL: B-spline Adaptive COLlocation software for 1-D parabolic PDEs, Rong Wang*, Patrick Keast and Paul H. Muir, ACM Trans. Math. Softw., Vol 30, 2004, pp. 454-470.
[4] Linear instability of the fifth-order WENO method, Rong Wang and Raymond J. Spiteri*, SIAM J. Numer. Anal., Vol 45, 2007, pp. 1871-1901.
[5] Algorithm 874: BACOLR: Spatial and Temporal Error Control Software for PDEs based on High Order Adaptive Collocation, Rong Wang, Patrick Keast and Paul H. Muir*, ACM Trans. Math. Softw, Volume 34, Issue 3, 2008, Article 15.
[6] Observations on the fifth-order WENO method with non-uniform meshes, Rong Wang, Hui Feng, and Raymond J. Spiteri*, Appl. Math. Comput., Vol. 196, 2008, pp. 433-447.
[7] A New Mapped Weighted Essentially Non-oscillatory Scheme, Hui Feng, Fuxing Hu, and Rong Wang*, J. Sci. Comput., Vol 51, 2012, pp. 449--473.
[8] An improved mapped weighted essentially non-oscillatory scheme, Hui Feng, Cong Huang, and Rong Wang*, Appl. Math. Comput.,Vol 232, 2014, pp. 453-468.
[9] A new family of mapped weighted essentially non-oscillatory method using rational mapping functions, Rong Wang*, Hui Feng and Cong Huang, J. Sci. Comput., to appear.
[10] An adaptive mesh method for 1D hyperbolic conservation Laws, Fuxing Hu*, Rong Wang, Xueyong Chen, and Hui Feng, Appl. Numer. Math.,Vol 91,2015,pp. 11-25.
[11] A modified fifth-order WENOZ method for hyperbolic conservation laws, Fuxing Hu*, Rong Wang, and Xueyong Chen, J. Comput. Appl. Math., to appear.