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PATH-CONSERVATIVE CENTRAL-UPWIND SCHEMES FOR
NONCONSERVATIVE HYPERBOLIC SYSTEMS

Manuel Jesús Castro D́ıaz1 and Alexander Kurganov2,3,∗,
and Tomás Morales de Luna4

Abstract. We develop path-conservative central-upwind schemes for nonconservative one-dimensional
hyperbolic systems of nonlinear partial differential equations. Such systems arise in a variety of appli-
cations and the most challenging part of their numerical discretization is a robust treatment of noncon-
servative product terms. Godunov-type central-upwind schemes were developed as an efficient, highly
accurate and robust “black-box” solver for hyperbolic systems of conservation and balance laws. They
were successfully applied to a large number of hyperbolic systems including several nonconservative
ones. To overcome the difficulties related to the presence of nonconservative product terms, several
special techniques were proposed. However, none of these techniques was sufficiently robust and thus
the applicability of the original central-upwind schemes was rather limited. In this paper, we rewrite
the central-upwind schemes in the form of path-conservative schemes. This helps us (i) to show that the
main drawback of the original central-upwind approach was the fact that the jump of the nonconserva-
tive product terms across cell interfaces has never been taken into account and (ii) to understand how
the nonconservative products should be discretized so that their influence on the numerical solution is
accurately taken into account. The resulting path-conservative central-upwind scheme is a new robust
tool for both conservative and nonconservative hyperbolic systems. We apply the new scheme to the
Saint-Venant system with discontinuous bottom topography and two-layer shallow water system. Our
numerical results illustrate the good performance of the new path-conservative central-upwind scheme,
its robustness and ability to achieve very high resolution.
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1. Introduction

This paper is focused on development of path-conservative central-upwind (PCCU) schemes for non-
conservative one-dimensional (1D) hyperbolic system of nonlinear partial differential equations (PDEs),
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Ut + F (U)x = B(U)Ux, B ∈ RN×N , (1.1)

where U ∈ RN is a vector of unknown quantities, F : RN → RN is a (nonlinear) flux, and B(U) ∈ RN×N .
PDE systems of this form arise in many fluid models in different contexts: Saint-Venant system of shallow

water equations with arbitrary bottom topography, multilayer shallow water models, multiphase flow models
and many others.

Central-upwind (CU) schemes were originally introduced in [34,38] (see also [30,32]) for 1D hyperbolic systems
of conservation laws,

Ut + F (U)x = 0, (1.2)

and its multidimensional extensions. CU schemes belong to the class of Riemann-problem-solver-free Godunov-
type central schemes; see [24,40,52], where the simplest first- and second-order central schemes were introduced,
and [30] for a recent review of central schemes. Therefore, CU schemes enjoy the main advantages of central
schemes – simplicity and robustness. As CU schemes do not use any (approximate) Riemann problem solvers
or local characteristic decomposition, they can be used as “black-box” solvers for general multidimensional
hyperbolic systems of conservation laws. At the same time, CU scheme have a certain upwind nature as the
information on local speeds of propagation (related to the largest and smallest eigenvalues of the Jacobian
∂F /∂U) are used in their derivation to reduce excessive numerical dissipation (see, e.g., [30, 32, 34, 37, 38])
typically present in staggered central schemes such as the Nessyahu-Tadmor scheme [52] and its higher-order
(see, e.g., [6, 44,47]) and multidimensional (see, e.g., [3, 28,44,45]) extensions.

The main difficulty of systems of the form (1.1) both from the theoretical and the numerical point of view
comes from the presence of nonconservative products (when B 6= 0). In fact, when the solution U is discon-
tinuous, which is a common feature of nonlinear hyperbolic systems, these nonconservative terms are not well
defined in the distributional framework and the usual concept of weak solution cannot be used. There are
several mathematical theories allowing to define the notion of weak solution for nonconservative systems; see,
e.g., [18, 20, 60]. For instance, discontinuous solutions can be understood as the Borel measures as it was done
in [20]; see also [41, 42]. This concept has been numerically utilized in [15, 22, 51, 53], where path-conservative
finite-volume schemes were presented and applied to various nonconservative hyperbolic systems; also see the
review papers [16,54] and references therein. These schemes rely on the rigorous definition of the weak solution,
which depends on the choice of a family of paths in the phase space. In this paper, we incorporate the CU
schemes into the path-conservative framework and derive particularly simple – yet highly accurate and robust –
PCCU scheme.

We also apply the designed PCCU scheme to two particular nonconservative hyperbolic systems. The first
one is the Saint-Venant system of shallow water equations with discontinuous bottom topography. This system
was originally proposed in [21] and is still widely used to model water flow in lakes, rivers, canals and coastal
areas as well as in a variety of oceanographic and atmospheric science applications. The second system is the
two-layer shallow water equations governing the flow of two superposed immiscible layers of shallow water
fluids. This system, which models oceanographic water flows in straights and channels (see, e.g., [13, 48]),
is conceptually more complicated than the single-layer Saint-Venant system since it contains nonconservative
interlayer momentum exchange terms. Another difficulty in developing the PCCU schemes for these two systems
is related to the numerical computation of steady-state and quasi-steady-state solutions. It is well known that
a good numerical method for both the single- and two-layer shallow water equations should be able to exactly
preserve still-water equilibria (“late at rest” states). Such schemes preserve a delicate balance between the
flux and source terms on the discrete level and thus are called well-balanced schemes. We refer the reader to
[1, 4, 5, 8–11, 13, 16, 23, 43, 51] for some well-balanced schemes for the systems of single- and two-layer shallow
water equations, respectively. Well-balanced CU schemes were developed for both single- [7,12,31,35] and two-
layer [19, 36] shallow water equations. They, however, may fail to accurately capture the solution in certain
situations as discussed and illustrated below. In this paper, we not only develop PCCU schemes for these
two nonconservative systems, but also demonstrate the advantages of the PCCU schemes over their non-path-
conservative predecessors.
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The rest of the paper is organized as follows. In Section 2, we briefly review the CU schemes for 1D hyperbolic
systems of conservation laws and reformulate the CU schemes in the form that fits the path-conservative
framework well. In Section 3, we rigorously derive the PCCU schemes for general nonconservative hyperbolic
systems. In Section 4, we develop well-balanced PCCU schemes and apply them to the Saint-Venant system
with discontinuous bottom topography (Sect. 4.1) and two-layer shallow water equations (Sect. 4.2). Finally, in
Section 5, we present several numerical examples demonstrating a superb performance of the proposed PCCU
schemes.

2. Central-upwind schemes for conservative systems

We first consider the conservative hyperbolic system (1.2) and briefly review the semi-discrete CU scheme
from [34]. To this end, we introduce a grid which, for simplicity, is assumed to be uniform, that is, we take
xα := α∆x, where ∆x is a small spatial scale, and the corresponding finite-volume cells Cj := [xj− 1

2
, xj+ 1

2
]. We

assume that at certain time level t, the solution realized in terms of its cell averages,

U j(t) =
1

∆x

∫
Cj

U(x, t) dx,

is available.
The solution is then evolved in time by solving the following system of ODEs:

d
dt

U j(t) = −
Hj+ 1

2
(t)−Hj− 1

2
(t)

∆x
, (2.1)

where the CU fluxes are (from here on we suppress the time-dependence of all indexed quantities in order to
shorten the notation)

Hj+ 1
2

=
a+
j+ 1

2
F (U−

j+ 1
2
)− a−

j+ 1
2
F (U+

j+ 1
2
)

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
U+
j+ 1

2
−U−

j+ 1
2

)
. (2.2)

Here, U±
j+ 1

2
are the right/left-sided values of the piecewise polynomial reconstruction

Ũ(x) =
∑
j

Pj(x)χCj
(x), Pj =

(
P

(1)
j , . . . , P

(N)
j

)> (2.3)

where χ is a characteristic function and P
(i)
j are polynomials of a certain degree satisfying the conservation

and (formal) accuracy requirements, that is, for all j

1
∆x

∫
Cj

Pj(x) dx = U j

and
P

(i)
j (x) = U (i)(x) +O((∆x)r), x ∈ Cj ,

where r is a (formal) order of accuracy and U(x) = (U (1), . . . , U (N))T is the exact smooth solution. Therefore,

U−
j+ 1

2
= Pj(xj+ 1

2
), U+

j+ 1
2

= Pj+1(xj+ 1
2
); (2.4)

see Figure 1. The one-sided local speeds of propagation a±
j+ 1

2
are an upper/lower bounds on the largest/smallest

eigenvalues λ1 < . . . < λN of the Jacobian

A(U) :=
∂F

∂U
(U).
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Figure 1. Sketch of a piecewise polynomial reconstruction.

These speeds can often be estimated by

a−
j+ 1

2
= min

{
λ1

(
A(U−

j+ 1
2
)
)
, λ1

(
A(U+

j+ 1
2
)
)
, 0
}
,

a+
j+ 1

2
= max

{
λN
(
A(U−

j+ 1
2
)
)
, λN

(
A(U+

j+ 1
2
)
)
, 0
}
.

(2.5)

When the analytic formulae for the largest and smallest eigenvalues are unavailable, one may obtain rea-
sonably sharp estimates using, for example, the Lagrange theorem [39, 50]; see [36] for details on applying the
Lagrange theorem in the case of the 4× 4 system of two-layer shallow water equations. In Section 4.2 below, we
alternatively use a first-order approximation of a−

j+ 1
2

and a+
j+ 1

2
, which seems to be sufficiently accurate in all of

the studied numerical examples.

Remark 2.1. The (formal) order of the semi-discrete CU scheme (2.1)–(2.5) is determined by the order of the
piecewise polynomial reconstruction and the order of the ODE solver the system (2.1) is integrated in time.

Remark 2.2. The non-oscillatory property of the CU scheme is guaranteed provided the reconstruction (2.3)
is non-oscillatory. The latter is typically achieved using nonlinear limiters; see, e.g., [46, 52,58,59].

Remark 2.3. We would like to point out that the first-order version of the CU scheme (2.1)–(2.5) is exactly
the semi-discrete version of the HLL scheme introduced in [27].

2.1. Reformulated central-upwind scheme

We now rewrite the semi-discrete CU scheme (2.1)–(2.5). The new formulation of the scheme will then be
used in Section 3 to design a PCCU scheme for the nonconservative system (1.1).

Let us define the following two coefficients:

α
j+ 1

2
0 :=

−2 a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

, α
j+ 1

2
1 :=

a+
j+ 1

2
+ a−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

,

using which the CU numerical flux (2.2) can be rewritten as

Hj+ 1
2

=
1− αj+

1
2

1

2
F (U+

j+ 1
2
) +

1 + α
j+ 1

2
1

2
F (U−

j+ 1
2
)− α

j+ 1
2

0

2

(
U+
j+ 1

2
−U−

j+ 1
2

)
. (2.6)

We then define the following two quantities:

D−
j+ 1

2
:= Hj+ 1

2
− F (U−

j+ 1
2
)=

1
2

[(
1− αj+

1
2

1

)(
F (U+

j+ 1
2
)− F (U−

j+ 1
2
)
)
− αj+

1
2

0

(
U+
j+ 1

2
−U−

j+ 1
2

)]
,

D+
j+ 1

2
:= F (U+

j+ 1
2
)−Hj+ 1

2
=

1
2

[(
1 + α

j+ 1
2

1

)(
F (U+

j+ 1
2
)− F (U−

j+ 1
2
)
)

+ α
j+ 1

2
0

(
U+
j+ 1

2
−U−

j+ 1
2

)]
,

(2.7)
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which represent the differences between the numerical flux and the physical fluxes at both sides of the cell
interface.

Finally, we consider a sufficiently smooth path Ψj+ 1
2
(s) := Ψ

(
s; U−

j+ 1
2
,U+

j+ 1
2

)
connecting the states U−

j+ 1
2

and U+
j+ 1

2
, that is,

Ψ : [0, 1]× RN × RN → RN , Ψ
(
0; U−

j+ 1
2
,U+

j+ 1
2

)
= U−

j+ 1
2
, Ψ

(
1; U−

j+ 1
2
,U+

j+ 1
2

)
= U+

j+ 1
2
, (2.8)

and then, equipped with (2.7), (2.8) and taking into account that

F (U−
j+ 1

2
)− F (U+

j− 1
2
) =

∫
Cj

A(Pj(x))
dPj
dx

dx,

we rewrite the scheme (2.1), (2.6) in the following form:

d
dt

U j = − 1
∆x

(
Hj+ 1

2
− F (U−

j+ 1
2
) + F (U+

j− 1
2
)−Hj− 1

2
+ F (U−

j+ 1
2
)− F (U+

j− 1
2
)
)

= − 1
∆x

(
D+
j− 1

2
+ D−

j+ 1
2

+
∫
Ci

A(Pj(x))
dPj(x)

dx
dx

)
, (2.9)

with

D±
j+ 1

2
=

1± αj+
1
2

1

2

1∫
0

A(Ψj+ 1
2
(s))

dΨj+ 1
2

ds
ds± α

j+ 1
2

0

2

(
U+
j+ 1

2
−U−

j+ 1
2

)
. (2.10)

3. Path-conservative central-upwind scheme

In order to design a PCCU scheme, we first rewrite the system (1.1) in the following quasilinear form:

Ut +A(U)Ux = 0, (3.1)

where

A(U) :=
∂F

∂U
(U)−B(U). (3.2)

The semi-discrete scheme (2.9), (2.10) can be directly generalized to the nonconservative system (3.1), (3.2)
by replacing A with A:

d
dt

U j = − 1
∆x

(
D+
j− 1

2
+ D−

j+ 1
2

+
∫
Ci

A(Pj(x))
dPj(x)

dx
dx

)
, (3.3)

where

D±
j+ 1

2
=

1± αj+
1
2

1

2

1∫
0

A(Ψj+ 1
2
(s))

dΨj+ 1
2

ds
ds± α

j+ 1
2

0

2

(
U+
j+ 1

2
−U−

j+ 1
2

)
. (3.4)

Substituting (3.2) into (3.3) and (3.4) results in

d
dt

U j = − 1
∆x

(
D+
j− 1

2
+ D−

j+ 1
2

+ F (U−
j+ 1

2
)− F (U+

j− 1
2
)−Bj

)
, (3.5)
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where

D±
j+ 1

2
=

1± αj+
1
2

1

2

(
F (U+

j+ 1
2
)− F (U−

j+ 1
2
)−BΨ,j+ 1

2

)
± α

j+ 1
2

0

2

(
U+
j+ 1

2
−U−

j+ 1
2

)
, (3.6)

Bj :=
∫
Ci

B(Pj(x))
dPj(x)

dx
dx, BΨ,j+ 1

2
:=

1∫
0

B(Ψj+ 1
2
(s))

dΨj+ 1
2

ds
ds. (3.7)

Moreover, following the same steps as in the derivation in Section 2, one may verify that (3.5)–(3.7) is
equivalent to

d
dt

U j = − 1
∆x

[
Hj+ 1

2
−Hj− 1

2
−Bj −

a+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

BΨ,j− 1
2

+
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

BΨ,j+ 1
2

]
, (3.8)

where the numerical flux Hj+ 1
2

is given by the original formula (2.2).
To summarize: The semi-discrete PCCU scheme is given by (3.8), (2.2)–(2.5).

Remark 3.1. Notice that a straightforward discretization of the nonconservative term B(U)Ux used, for exam-
ple, in [19,29,33,36] leads to a very similar semi-discretization:

d
dt

U j = − 1
∆x

[
Hj+ 1

2
−Hj− 1

2
−Bj

]
. (3.9)

The only difference between (3.8) and (3.9) are the two terms

−
a+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

BΨ,j− 1
2

and
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

BΨ,j+ 1
2
,

which account for the contribution of the jumps of the nonconservative products at the cell interfaces. Note
that these terms make the numerical scheme to become formally consistent with a particular definition of weak
solutions. If those terms are neglected, as in the original CU scheme, the resulting method is only consistent
with smooth solutions. We want to stress that those terms play an important role in the robustness of the
numerical method as we will show in the numerical examples reported in Section 5, where the PCCU scheme
clearly outperforms the original CU one.

Remark 3.2. As in the case of conservative systems, the first-order version of the PCCU scheme coincides
with the semi-discrete HLL scheme for nonconservative systems; see, e.g., [16].

Remark 3.3. It is clear that the concept of weak solution and the definition of path-conservative schemes
strongly depends on the chosen family of paths, which is a priori arbitrary. The crucial question is thus how to
choose the “good” family of paths. The answer on this question is not easy and it is not in the scope of this
paper. We refer to [16] for a detailed discussion on the subject. In this paper, we consider the canonical path
which is the segment path.

Remark 3.4. In [15], a negative result of convergence for path-conservative numerical methods was given
together with several numerical examples. Later, a new example was given in [2]. These results have led in many
cases to an over-simplified picture according to which these convergence difficulties are a specific drawback of
path-conservative methods.

In practice, however, path-conservative numerical methods (and in particular the proposed PCCU scheme)
converge with the expected order of accuracy and, under the adequate CFL condition, with the same stability
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property as their conservative counterparts. The difficulty comes from the fact that the limits of numerical solu-
tions may differ from the correct ones in the case of nonconservative systems as weak solutions of nonconservative
systems may be defined in infinitely many ways (for different paths).

In fact, the key point in understanding the problem of convergence for nonconservative systems is the follow-
ing: the limits of the numerical solutions satisfy a jump condition which is related to the numerical viscosity of
the method and not to the physically relevant one. Of course, this phenomenon affects any numerical method in
which the small scale effects (the vanishing diffusion and/or dispersion) are not taken into account, regardless
of whether it is path-conservative or not. For instance, even numerical solutions computed using the first-order
Godunov scheme (which is based on the physically relevant weak solutions of the Riemann problems), may
fail to converge to the physically relevant solutions: this is due to the numerical viscosity introduced at the
averaging step. Again, we refer to [16] for a detailed discussion.

4. Well-balanced path-conservative central-upwind schemes

In this section, we consider a slightly different nonconservative system

Ut + F (U , Z)x = B(U , Z)Ux + S(U)Zx, (4.1)

where Z = Z(x) is a given piecewise smooth function with a finite number of discontinuities. In such a case,
the right-hand side (RHS) of (4.1) may represent a geometric source term appearing, for example, in the Saint-
Venant system of shallow water equations (see Sect. 4.1) or the two-layer shallow water system (see Sect. 4.2).

It is possible to apply the PCCU scheme from Section 3 to the system (4.1). To this end, we add the (N+1)-st
equation Zt = 0 to (4.1), introduce the extended vector of unknowns W := (U>, Z)> ∈ RN+1, and rewrite the
system (4.1) in the following quasilinear form:

Wt +

 ∂F

∂U
(W )−B(W ) −Ŝ(W )

0 0

Wx = 0, Ŝ(W ) := S(U)− ∂F

∂Z
(W ). (4.2)

The PCCU scheme (3.8), (2.2)–(2.5) can now be directly applied to the system (4.2). However, the resulting
scheme will have two major drawbacks. First, the numerical diffusion present in the PCCU scheme will in general
affect the last equation so that the computed Z will not stay time-independent. Second, the scheme will (most
probably) be not well-balanced in the sense that it will not be designed to preserve steady-state solutions of
(4.1).

To overcome the first of the above difficulties, we apply the PCCU scheme (written in the form (3.5)–(3.7),
(2.2)–(2.5)) to the first N equations of the system (4.2) only. This results in

d
dt

U j = − 1
∆x

(
D+
j− 1

2
+ D−

j+ 1
2

+ F (W−
j+ 1

2
)− F (W +

j− 1
2
)−Bj − Sj

)
, (4.3)

where

D±
j+ 1

2
=

1± αj+
1
2

1

2

(
F (W +

j+ 1
2
)− F (W−

j+ 1
2
)−BΨ,j+ 1

2
− SΨ,j+ 1

2

)
± α

j+ 1
2

0

2

(
U+
j+ 1

2
−U−

j+ 1
2

)
, (4.4)

Bj :=
∫
Ci

B(Pj(x))
(dP (1)

j (x)
dx

, . . . ,
dP (N)

j (x)
dx

)>
dx, Sj :=

∫
Ci

S(Pj(x))
dP (N+1)

j (x)
dx

dx, (4.5)

BΨ,j+ 1
2

:=

1∫
0

B(Ψj+ 1
2
(s))

(dΨ(1)

j+ 1
2

ds
, . . . ,

dΨ(N)

j+ 1
2

ds

)T
ds, SΨ,j+ 1

2
:=

1∫
0

S(Ψj+ 1
2
(s))

dΨ(N+1)

j+ 1
2

ds
ds. (4.6)



966 M.J. CASTRO DÍAZ ET AL.

Here, a piecewise polynomial reconstruction is applied to W , that is, (2.3) and (2.4) are replaced with

W̃ (x) =
∑
j

Pj(x)χCj
(x), Pj =

(
P

(1)
j , . . . , P

(N)
j , P

(N+1)
j

)> (4.7)

and
W−

j+ 1
2

= Pj(xj+ 1
2
), W +

j+ 1
2

= Pj+1(xj+ 1
2
), (4.8)

respectively, a smooth path Ψj+ 1
2
(s) =

(
Ψ(1)

j+ 1
2
, . . . ,Ψ(N)

j+ 1
2
,Ψ(N+1)

j+ 1
2

)> := Ψ
(
s; W−

j+ 1
2
,W +

j+ 1
2

)
now connects the

states W−
j+ 1

2
and W +

j+ 1
2
, that is,

Ψ : [0, 1]× RN+1× RN+1→ RN+1, Ψ
(
0; W−

j+ 1
2
,W +

j+ 1
2

)
= W−

j+ 1
2
, Ψ

(
1; W−

j+ 1
2
,W +

j+ 1
2

)
= W +

j+ 1
2
, (4.9)

and the one-sided local speeds are still calculated using the largest (λN ) and smallest (λ1) eigenvalues of

A(W ) =
∂F

∂U
(W )−B(W ).

For example, the local speeds can be estimated using

a−
j+ 1

2
= min

{
λ1

(
A(W−

j+ 1
2
)
)
, λ1

(
A(W +

j+ 1
2
)
)
, 0
}
,

a+
j+ 1

2
= max

{
λN
(
A(W−

j+ 1
2
)
)
, λN

(
A(W +

j+ 1
2
)
)
, 0
}
.

(4.10)

Since the obtained scheme (4.3)–(4.10) is not guaranteed to preserve steady-state solutions of (4.1), it has
to be modified further. In order to construct a well-balanced PCCU scheme, we follow the idea presented in
[14,17,55] and add an additional term to D±

j+ 1
2

so that (4.4) is replaced with

D±
j+ 1

2
=

1± αj+
1
2

1

2

(
F (W +

j+ 1
2
)− F (W−

j+ 1
2
)−BΨ,j+ 1

2
− SΨ,j+ 1

2

)
± α

j+ 1
2

0

2

(
U+
j+ 1

2
−U−

j+ 1
2
− (A?j+ 1

2
)−1

ŜΨ,j+ 1
2

)
. (4.11)

Here, Aj+ 1
2

is an approximation of the Jacobian matrix A(W ) near x = xj+ 1
2

(e.g., one may use the Roe
matrix [56], but simpler strategies such as those studied in [49] may work as well), A?

j+ 1
2

is its projection onto the
subset of the state space containing the steady-state solutions to be preserved (for details see [14]; for particular
examples see Sects. 4.1 and 4.2), and

ŜΨ,j+ 1
2

:=

1∫
0

Ŝ(Ψj+ 1
2
(s))

dΨ(N+1)

j+ 1
2

ds
ds. (4.12)

Finally, the scheme (4.3), (4.11) can be recast in the following form (compare with (3.8), (2.2)):

d
dt

U j =− 1
∆x

[
Hj+ 1

2
−Hj− 1

2
−Bj − Sj

+
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
BΨ,j+ 1

2
+ SΨ,j+ 1

2

)
−

a+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

(
BΨ,j− 1

2
+ SΨ,j− 1

2

)]
, (4.13)
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where the numerical flux Hj+ 1
2

is given by

Hj+ 1
2

=
a+
j+ 1

2
F (W−

j+ 1
2
)− a−

j+ 1
2
F (W +

j+ 1
2
)

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
U+
j+ 1

2
−U−

j+ 1
2
− (A?j+ 1

2
)−1

ŜΨ,j+ 1
2

)
. (4.14)

Remark 4.1. Notice that if the original CU flux,

Hj+ 1
2

=
a+
j+ 1

2
F (W−

j+ 1
2
)− a−

j+ 1
2
F (W +

j+ 1
2
)

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
U+
j+ 1

2
−U−

j+ 1
2

)
, (4.15)

is used instead of the modified flux given by (4.14), then the scheme will be well-balanced only in the case when

U+
j+ 1

2
−U−

j+ 1
2
≡ 0 for all j

at steady states. However, in a generic case, U+
j+ 1

2
−U−

j+ 1
2

does not necessarily vanish, while the corresponding
term appearing on the RHS of (4.14),

U+
j+ 1

2
−U−

j+ 1
2
− (A?j+ 1

2
)−1

ŜΨ,j+ 1
2
,

is in fact an approximation of ∆x(Ux − A(W )−1Ŝ(W )Zx) across the cell interface and it vanishes at steady-
state solutions if a proper path is selected in the evaluation ŜΨ,j+ 1

2
in (4.12); see [14, 17, 55] for details. This

guarantees a perfect balance between the source and flux terms as long as the reconstruction (2.4) preserves
the steady-state solution.

Remark 4.2. Also notice that the term we have added to make the scheme well-balanced appears in the
numerical viscosity and thus does not affect the consistency of the resulting PCCU scheme (4.13), (4.14),
(4.6)–(4.10).

Remark 4.3. There is a direct relation between the chosen path and the well-balanced property of path-
conservative schemes. More precisely, the numerical method discussed here is well-balanced if the family of
paths and the matrix A∗

j+ 1
2

are such that

A∗j+ 1
2
(U+

j+ 1
2
−U−

j+ 1
2
) = ŜΨ,j+ 1

2
(4.16)

whenever U±
j+ 1

2
are steady states. We note that choosing the segments path for the single- and two-layer shallow-

water systems is enough to ensure that (4.16) is satisfied for “lake at rest” solutions (due to the fact that they are
defined by linear relations), but a more sophisticated family of paths would be required to preserve moving-water
equilibria. We refer the reader to [16] for a detailed discussion on this subject.

4.1. Application to the Saint-Venant system

We now consider a particular example of the nonconservative system (4.1) – the Saint-Venant system of
shallow water equations, ht + qx = 0,

qt +
(
hu2 +

g

2
h2
)
x

= −ghZx,
(4.17)

where h(x, t), q(x, t) and u(x, t) = q(x, t)/h(x, t) denote the water depth, discharge and velocity, respectively,
Z(x) represents the bottom topography which is assumed to be discontinuous at a finite number of points,
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and g is the constant gravitational acceleration. Clearly, the system (4.17) can be written in the vector form
(4.2) with U = (h, q)>, W = (h, q, Z)>, F (W ) = (q, q

2

h + g
2h

2)>, B(W ) ≡ 0, and the geometric source term
S(U) = (0,−gh)>.

In this section, we restrict our consideration to the second-order schemes, that is, the polynomial pieces in
(4.7) are taken to be linear:

Pj(x) = W j + (Wx)j(x− xj), (4.18)

where (Wx)j are numerical derivatives computed using a nonlinear limiter, say, using the minmod one [46,52,59]:

(Wx)j = minmod

(
W j+1 −W j

∆x
,
W j −W j−1

∆x

)
,

where the minmod function

minmod(α, β) =
sgn(α) + sgn(β)

2
min (|α|, |β|)

is applied to the above vector quantities in a componentwise manner.
We also take a particular example of the simplest linear segment path

Ψj+ 1
2
(s) = W−

j+ 1
2

+ s
(
W +

j+ 1
2
−W−

j+ 1
2

)
, (4.19)

which leads to the following expressions for Sj and SΨ,j+ 1
2

in (4.5) and (4.6), respectively:

Sj =

(
0

−g
2

(h−
j+ 1

2
+ h+

j− 1
2
)(Z−

j+ 1
2
− Z+

j− 1
2
)

)
, SΨ,j+ 1

2
=

(
0

−g
2

(h+
j+ 1

2
+ h−

j+ 1
2
)(Z+

j+ 1
2
− Z−

j+ 1
2
)

)
. (4.20)

Note that in this example, ∂F /∂Z ≡ 0 and thus ŜΨ,j+ 1
2

= SΨ,j+ 1
2
.

In order to design the scheme (4.13), (4.14) for the Saint-Venant system (4.17), we use its Jacobian,

∂F

∂U
(W ) =

(
0 1

gh− u2 2u

)
,

and since in this example, A = ∂F /∂U , the one-sided local speeds (4.10) are

a−
j+ 1

2
= min

{
u−
j+ 1

2
−
√
gh−

j+ 1
2
, u+

j+ 1
2
−
√
gh+

j+ 1
2
, 0
}
,

a+
j+ 1

2
= max

{
u−
j+ 1

2
+
√
gh−

j+ 1
2
, u+

j+ 1
2

+
√
gh+

j+ 1
2
, 0
}
,

(4.21)

and the matrices A?
j+ 1

2
and (A?

j+ 1
2
)−1, needed to evaluate the numerical flux (4.14), are

A?j+ 1
2

=

(
0 1

g

2
(h+
j+ 1

2
+ h−

j+ 1
2
) 0

)
and (A?j+ 1

2
)−1 =

0
2

g(h+
j+ 1

2
+ h−

j+ 1
2
)

1 0

 . (4.22)

Note that A?
j+ 1

2
was obtained by the evaluation of A(W ) at (W +

j+ 1
2

+ W−
j+ 1

2
)/2 followed by its projection

onto the “lake at rest” steady state at which

u ≡ 0 and h+ Z ≡ Const. (4.23)

The resulting semi-discrete second-order PCCU scheme for the Saint-Venant system is then (4.13), (4.14)
with (4.8), (4.18), (4.20)–(4.22). In order to verify that the scheme is well-balanced, we need to check whether



PATH-CONSERVATIVE CENTRAL-UPWIND SCHEMES 969

the last term on the RHS of (4.14) vanishes at the “lake at rest” data (4.23). Indeed, using (4.20) and (4.22)
and the fact that in this example ŜΨ,j+ 1

2
= SΨ,j+ 1

2
, we obtain

U+
j+ 1

2
−U−

j+ 1
2
− (A?j+ 1

2
)−1

ŜΨ,j+ 1
2

=

(
(h+
j+ 1

2
+ Z+

j+ 1
2
)− (h−

j+ 1
2

+ Z−
j+ 1

2
)

q+
j+ 1

2
− q−

j+ 1
2

)
. (4.24)

Clearly, if qj ≡ 0 then all of the reconstructed values of q are zero and the second component in (4.24) vanishes.
However, the first component will necessarily vanish only if we modify the piecewise linear reconstruction
procedure as follows. Instead of reconstructing h, q and Z, we reconstruct ω := h + Z, q and Z and then
recompute

h±
j+ 1

2
:= ω±

j+ 1
2
− Z±

j+ 1
2
.

Notice that the water surface variable ω is constant at the “lake at rest” steady state (4.23) and thus all of
its point values at cell interfaces will be equal and the first component in (4.24) will then vanish.

After we have ensured that the last term on the RHS of (4.14), a straightforward computation shows that at
the “lake at rest” steady state (4.23), the RHS of (4.13) is equal to zero so that the resulting scheme is indeed
well-balanced.

4.2. Application to the two-layer shallow water equations

We now consider another example of the nonconservative system – the two-layer shallow water system written
in the same form as in [36]:

(h1)t + (q1)x = 0,

(q1)t +
(
q2
1

h1
+ gεh1

)
x

= gε(h1)x,

ωt + (q2)x = 0,

(q2)t +
(

q2
2

ω − Z
+
g

2
[
ω2 − rh2

1

]
− gε̂Z

)
x

= −grε(h1)x − gε̂Zx.

(4.25)

Here, h1(x, t) and h2(x, t) are the depths of the upper (lighter) and lower (heavier) water layer of the constant
densities ρ1 and ρ2, respectively, q1(x, t) and q2(x, t) are the corresponding discharges, r := ρ1/ρ2 ≤ 1 is
the density ratio, g is the constant gravitational acceleration, Z(x) represents the time-independent bottom
topography, ω(x, t) := h2(x, t) + Z(x), ε(x, t) := h1(x, t) + ω(x, t), and ε̂(x, t) := rh1(x, t) + ω(x, t).

Similarly to the single layer case discussed in Section 4.1, we add the fifth equation Zt = 0 to the system
(4.25) and rewrite it in the vector form (4.2) with U = (h1, q1, ω, q2)>, W = (h1, q1, ω, q2, Z)>, F (W ) =(
q1,

q21
h1

+ g(h1 + ω)h1, q2,
q22
ω−Z + g

2

[
ω2 − rh2

1

]
− g(rh1 + ω)Z

)>, and

B(W ) =

 0 0 0 0
g(h1 + ω) 0 0 0

0 0 0 0
−gr(h1 + ω) 0 0 0

 , S(U) =

 0
0
0

−g(rh1 + ω)

 .

Notice that at the “lake at rest” steady states,

q1 ≡ q2 ≡ 0, h1 ≡ Const, ω = h2 + Z ≡ Const, (4.26)

that is, U ≡ Const, and thus
U+
j+ 1

2
−U−

j+ 1
2
≡ 0 ∀j,
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provided the piecewise polynomial reconstruction (2.3) exactly recovers the constant states (4.26). Therefore, a
well-balanced CU scheme will be obtained with the help of the original CU flux (4.15). Unfortunately, in presence
of shocks, the original CU scheme is sensitive to the value ε. As a consequence, it may produce different solutions
depending on the reference level or the order of the method, and it may produce strong spurious oscillations for
time-dependent problems, as we demonstrate in the numerical simulations reported in Section 5.

In order to avoid the aforementioned drawbacks, the PCCU scheme (4.13), (4.15), (4.5)–(4.10) will be applied
to the two-layer shallow-water system in a straightforward manner.

As in the case of a single layer, we use the piecewise linear reconstruction (4.18), which leads to the following
expressions for Bj and Sj :

Bj =


0

g
(
(h1)j +ωj

)(
(h1)−

j+ 1
2
− (h1)+

j− 1
2

)
0

−gr
(
(h1)j +ωj

)(
(h1)−

j+ 1
2
− (h1)+

j− 1
2

)
 , Sj =


0
0
0

−g
(
r(h1)j +ωj

)(
Z−
j+ 1

2
− Z+

j− 1
2

)
 , (4.27)

and the linear segment path (4.19), which results in

BΨ,j+ 1
2

=


0

g

2
(
(h1)+

j+ 1
2

+ ω+
j+ 1

2
+ (h1)−

j+ 1
2

+ ω−
j+ 1

2

)(
(h1)+

j+ 1
2
− (h1)−

j+ 1
2

)
0

−gr
2
(
(h1)+

j+ 1
2

+ ω+
j+ 1

2
+ (h1)−

j+ 1
2

+ ω−
j+ 1

2

)(
(h1)+

j+ 1
2
− (h1)−

j+ 1
2

)
 (4.28)

and

SΨ,j+ 1
2

=


0
0
0

−g
2
(
r(h1)+

j+ 1
2

+ ω+
j+ 1

2
+ r(h1)−

j+ 1
2

+ ω−
j+ 1

2

)(
Z+
j+ 1

2
− Z−

j+ 1
2

)
 . (4.29)

In order to design the scheme (4.13), (4.14) for the two-layer system (4.25), we use the matrix

A(W ) =
∂F

∂U
(W )−B(W ) =

 0 1 0 0
gh1 − u2

1 2u1 gh1 0
0 0 0 1

grh2 0 gh2 − u2
2 2u2

 , (4.30)

where u1 = q1/h1, u2 = q2/h2 and h2 = ω − Z. Then, the one-sided local speeds (4.10) are obtained using the
first-order (in u1 − u2 and (1− r)) approximation of the largest and smallest eigenvalues of A(W ), obtained in
[57]:

a−
j+ 1

2
= min

{
(um)−

j+ 1
2
−
√
g
(
(h1)−

j+ 1
2

+ (h2)−
j+ 1

2

)
, (um)+

j+ 1
2
−
√
g
(
(h1)+

j+ 1
2

+ (h2)+
j+ 1

2

)
, 0
}
,

a+
j+ 1

2
= max

{
(um)−

j+ 1
2

+
√
g
(
(h1)−

j+ 1
2

+ (h2)−
j+ 1

2

)
, (um)+

j+ 1
2

+
√
g
(
(h1)+

j+ 1
2

+ (h2)+
j+ 1

2

)
, 0
}
,

(4.31)

where um := (q1 + q2)/(h1 + h2).

Remark 4.4. Alternatively, a±
j+ 1

2
can be computed using the upper/lower bounds on the largest/smallest

eigenvalues of A(W ), as it was proposed in [36].

To summarize, the resulting semi-discrete second-order PCCU scheme for the two-layer shallow water system
(4.25) is (4.13), (4.15) with (4.8), (4.18), (4.27)–(4.31).
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4.2.1. Classical formulation of the two-layer shallow water system

We now consider a classical formulation of the two-layer shallow water system,

(h1)t + (q1)x = 0,

(q1)t +
(
q2
1

h1
+
g

2
h2

1

)
x

= −gh1(h2 + Z)x,

(h2)t + (q2)x = 0,

(q2)t +
(
q2
2

h2
+
g

2
h2

2

)
x

= −gh2(rh1 + Z)x,

(4.32)

for which a direct application of the original CU scheme from [34] or [32] may be problematic (see [36] for
details). Our goal is to show that thanks to the rigorous treatment of the nonconservative product term, the
PCCU scheme can be developed and successfully applied to either formulation of the two-layer shallow water
system. This will give another evidence of the robustness of the proposed PCCU approach.

Once again, we add the fifth equation Zt = 0 to the system (4.32) and rewrite it in the vector form (4.2)
with U = (h1, q1, h2, q2)>, W = (h1, q1, h2, q2, Z)>, F (W ) = (q1,

q21
h1

+ g
2h

2
1, q2,

q22
h2

+ g
2h

2
2)>, ∂F /∂Z ≡ 0, and

B(W ) =

 0 0 0 0
0 0 −gh1 0
0 0 0 0

−grh2 0 0 0

 , S(U) =

 0
−gh1

0
−gh2

 .

In order to apply the PCCU scheme (4.13), (4.15), (4.5)–(4.10) to the classical formulation of the two-layer shal-
low water system, we note that one-sided local speeds can be still computed using (4.31), and thus we only need
to evaluate Bj , Sj , BΨ,j+ 1

2
, SΨ,j+ 1

2
, and the well-balancing term in (4.11), U+

j+ 1
2
−U−

j+ 1
2
− (A?

j+ 1
2
)−1

SΨ,j+ 1
2
.

As in the previous cases, we use the piecewise linear reconstruction (4.18), which leads to the following
expressions for Bj and Sj :

Bj =


0

−g(h1)j
(
(h2)−

j+ 1
2
− (h2)+

j− 1
2

)
0

−gr(h2)j
(
(h1)−

j+ 1
2
− (h1)+

j− 1
2

)
 , Sj =


0

−g(h1)j
(
Z−
j+ 1

2
− Z+

j− 1
2

)
0

−g(h2)j
(
Z−
j+ 1

2
− Z+

j− 1
2

)
 , (4.33)

and the linear segment path (4.19), which results in

BΨ,j+ 1
2

=


0

−g
2
(
(h1)+

j+ 1
2

+ (h1)−
j+ 1

2

)(
(h2)+

j+ 1
2
− (h2)−

j+ 1
2

)
0

−gr
2
(
(h2)+

j+ 1
2

+ (h2)−
j+ 1

2

)(
(h1)+

j+ 1
2
− (h1)−

j+ 1
2

)
 (4.34)

and

SΨ,j+ 1
2

=


0

−g
2
(
(h1)+

j+ 1
2

+ (h1)−
j+ 1

2

)(
Z+
j+ 1

2
− Z−

j+ 1
2

)
0

−g
2
(
(h2)+

j+ 1
2

+ (h2)−
j+ 1

2

)(
Z+
j+ 1

2
− Z−

j+ 1
2

)
 . (4.35)
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Finally, the matrices A?
j+ 1

2
and (A?

j+ 1
2
)−1, needed to evaluate the numerical flux (4.14), are

A?j+ 1
2

=


0 1 0 0

g

2
(
(h1)+

j+ 1
2

+ (h1)−
j+ 1

2

)
0
g

2
(
(h1)+

j+ 1
2

+ (h1)−
j+ 1

2

)
0

0 0 0 1
gr

2
(
(h2)+

j+ 1
2

+ (h2)−
j+ 1

2

)
0
g

2
(
(h2)+

j+ 1
2

+ (h2)−
j+ 1

2

)
0

 (4.36)

and

(A?j+ 1
2
)−1 =


0

2
g(1− r)

(
(h1)+

j+ 1
2

+ (h1)−
j+ 1

2

) 0
2

g(r − 1)
(
(h2)+

j+ 1
2

+ (h2)−
j+ 1

2

)
1 0 0 0

0
2r

g(r − 1)
(
(h1)+

j+ 1
2

+ (h1)−
j+ 1

2

) 0
2

g(1− r)
(
(h2)+

j+ 1
2

+ (h2)−
j+ 1

2

)
0 0 1 0

 . (4.37)

Note that A?
j+ 1

2
was obtained by the evaluation of A(W ), given by (4.30), at (W +

j+ 1
2

+ W−
j+ 1

2
)/2 followed

by its projection onto the “lake at rest” steady state at which q1 ≡ q2 ≡ 0.
The resulting semi-discrete second-order PCCU scheme for the two-layer shallow water system (4.32) is then

given by (4.13), (4.14) with (4.8), (4.18), (4.31), (4.33)–(4.37). To verify that the scheme is well-balanced, we
need to check whether the last term on the RHS of (4.14) vanishes at the “lake at rest” data (4.26). To this
end, we note that now, as in the single-layer case, ∂F /∂Z ≡ 0 and thus ŜΨ,j+ 1

2
= SΨ,j+ 1

2
. Therefore, using

(4.29) and (4.37) we obtain

U+
j+ 1

2
−U−

j+ 1
2
− (A?j+ 1

2
)−1

SΨ,j+ 1
2

=


(h1)+

j+ 1
2
− (h1)−

j+ 1
2

(q1)+
j+ 1

2
− (q1)−

j+ 1
2(

(h2)+
j+ 1

2
+ Z+

j+ 1
2

)
−
(
(h2)−

j+ 1
2

+ Z−
j+ 1

2

)
(q2)+

j+ 1
2
− (q2)−

j+ 1
2

 . (4.38)

Since at the “lake at rest” steady state q1 ≡ q2 ≡ 0 and h1 ≡ Const, then all of the reconstructed values
of h1, q1 and q2 are the same and the first, second and forth components in (4.38) vanish. However, the third
component will necessarily vanish only if we reconstruct h1, q1, ω := h2 +Z, q2 and Z (instead of reconstructing
h1, q1, h2, q2 and Z) and then recompute

(h2)±
j+ 1

2
:= ω±

j+ 1
2
− Z±

j+ 1
2
.

Indeed, since the variable ω is constant at the “lake at rest” steady state (4.26), all of its point values at cell
interfaces will be equal and the third component in (4.38) will then vanish.

After we have ensured that the last term on the RHS of (4.14), a straightforward computation shows that at
the “lake at rest” steady state (4.26), the RHS of (4.13) is equal to zero so that the resulting scheme is indeed
well-balanced.

4.2.2. Equivalence of path-conservative central-upwind schemes for (4.25) and (4.32)

As we have previously pointed out, the original CU scheme does not take into account the discontinuities of
the nonconservative products at at the cell interfaces. This fact together with the non-well-balanced nature of
the original CU scheme makes it impossible to apply it to the original formulation of the two-layer shallow water
system (4.32). This is the reason why a new reformulation of the two-layer shallow-water system (4.25) was
proposed in [36]. When applied to this formulation, the original CU scheme is well-balanced and may produce
satisfactory results if ε ∼ 0 and no strong shocks appear. However, for discontinuous solutions, the numerical



PATH-CONSERVATIVE CENTRAL-UPWIND SCHEMES 973

derivative of h1 is O(∆x−1), so that the product ε(h1)x may not be small, in which case the original CU scheme
may fail to produce accurate solution.

At the same time, when the PCCU scheme with the linear path is applied to these systems, the resulting
schemes, (4.13), (4.15), (4.8), (4.18), (4.31), (4.27)–(4.30) for the system (4.25) and (4.13), (4.15), (4.8), (4.18),
(4.31), (4.33)–(4.38) for the system (4.32), are in fact equivalent, as we are going to show in this section.

First, we note that the first equations in (4.25) and (4.32) as well as their semi-discretization are exactly
the same. The third equations are not the same since the evolved quantities in (4.25) and (4.32) are ω and h2,
respectively. However, since the bottom topography Z is time-independent and since the numerical fluxes are
exactly the same, the semi-discretizations of the third equations in (4.25) and (4.32) coincide as well.

We now consider the second equations in (4.25) and (4.32). Since the evolved quantities are the same (q1), it
will be enough to show that the RHSs of the second components in the semi-discretizations (4.13) are the same
for both systems. Indeed, the second component of (4.13) for the system (4.25) is

RHS(2)
(4.25) =− 1

∆x

[
a+
j+ 1

2

{
(q1)2

h1
+ gh1(h1 + ω)

}−
j+ 1

2

− a+
j+ 1

2

{
(q1)2

h1
+ gh1(h1 + ω)

}+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
(q1)+

j+ 1
2
− (q1)−

j+ 1
2

)
−

a+
j− 1

2
a−
j− 1

2

a+
j− 1

2
− a−

j− 1
2

(
(q1)+

j− 1
2
− (q1)−

j− 1
2

)

−
a+
j− 1

2

{
(q1)2

h1
+ gh1(h1 + ω)

}−
j− 1

2

− a+
j− 1

2

{
(q1)2

h1
+ gh1(h1 + ω)

}+

j− 1
2

a+
j− 1

2
− a−

j− 1
2

− g
(
(h1)j +ωj

)(
(h1)−

j+ 1
2
− (h1)+

j− 1
2

)
+

a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

{
g

2

(
(h1)+

j+ 1
2

+ ω+
j+ 1

2
+ (h1)−

j+ 1
2

+ ω−
j+ 1

2

)(
(h1)+

j+ 1
2
− (h1)−

j+ 1
2

)}

−
a+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

{
g

2

(
(h1)+

j− 1
2

+ ω+
j− 1

2
+ (h1)−

j− 1
2

+ ω−
j− 1

2

)(
(h1)+

j− 1
2
− (h1)−

j− 1
2

)}]
,

and for the system (4.32) it is equal to

RHS(2)
(4.32) =− 1

∆x

[
a+
j+ 1

2

{
(q1)2

h1
+
g

2
h2

1

}−
j+ 1

2

− a+
j+ 1

2

{
(q1)2

h1
+
g

2
h2

1

}+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
(q1)+

j+ 1
2
− (q1)−

j+ 1
2

)
−

a+
j− 1

2
a−
j− 1

2

a+
j− 1

2
− a−

j− 1
2

(
(q1)+

j− 1
2
− (q1)−

j− 1
2

)

−
a+
j− 1

2

{
(q1)2

h1
+
g

2
h2

1

}−
j− 1

2

− a+
j− 1

2

{
(q1)2

h1
+
g

2
h2

1

}+

j− 1
2

a+
j− 1

2
− a−

j− 1
2

− g(h1)j
(
ω−
j+ 1

2
− ω+

j− 1
2

)
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−
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

{
g

2

(
(h1)+

j+ 1
2

+ (h1)−
j+ 1

2

)(
ω+
j+ 1

2
− ω−

j+ 1
2

)}

+
a+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

{
g

2

(
(h1)+

j− 1
2

+ (h1)−
j− 1

2

)(
ω+
j− 1

2
− ω−

j− 1
2

)}]
.

A straightforward computation shows that RHS(2)
(4.25) = RHS(2)

(4.32).
Finally, for the fourth components of (4.13) applied to the systems (4.25) and (4.32), we will obtain

RHS(4)
(4.25) =− 1

∆x

[
a+
j+ 1

2

{
(q2)2

ω − Z
+
g

2
[ω2 − rh2

1]− g(rh1 + ω)Z
}−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

−
a+
j+ 1

2

{
(q2)2

ω − Z
+
g

2
[ω − rh2

1]− g(rh1 + ω)Z
}+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
(q2)+

j+ 1
2
− (q2)−

j+ 1
2

)
−

a+
j− 1

2
a−
j− 1

2

a+
j− 1

2
− a−

j− 1
2

(
(q2)+

j− 1
2
− (q2)−

j− 1
2

)

−
a+
j− 1

2

{
(q2)2

ω − Z
+
g

2
[ω2 − rh2

1]− g(rh1 + ω)Z
}−
j− 1

2

a+
j− 1

2
− a−

j− 1
2

+

a+
j− 1

2

{
(q2)2

ω − Z
+
g

2
[ω − rh2

1]− g(rh1 + ω)Z
}+

j− 1
2

a+
j− 1

2
− a−

j− 1
2

− gr
(
(h1)j +ωj

)(
(h1)−

j+ 1
2
− (h1)+

j− 1
2

)
− g
(
r(h1)j +ωj

)(
Z−
j+ 1

2
− Z+

j− 1
2

)
−

a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

{
gr

2

(
(h1)+

j+ 1
2

+ ω+
j+ 1

2
+ (h1)−

j+ 1
2

+ ω−
j+ 1

2

)(
(h1)+

j+ 1
2
− (h1)−

j+ 1
2

)
+
g

2

(
r(h1)+

j+ 1
2

+ ω+
j+ 1

2
+ r(h1)−

j+ 1
2

+ ω−
j+ 1

2

)(
Z+
j+ 1

2
− Z−

j+ 1
2

)}
+

a+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

{
gr

2

(
(h1)+

j− 1
2

+ ω+
j− 1

2
+ (h1)−

j− 1
2

+ ω−
j− 1

2

)(
(h1)+

j− 1
2
− (h1)−

j− 1
2

)

+
g

2

(
r(h1)+

j− 1
2

+ ω+
j− 1

2
+ r(h1)−

j− 1
2

+ ω−
j− 1

2

)(
Z+
j− 1

2
− Z−

j− 1
2

)}]
,

and

RHS(4)
(4.32) =− 1

∆x

[
a+
j+ 1

2

{
(q2)2

ω − Z
+
g

2
[ω2 − Z2]

}−
j+ 1

2

− a+
j+ 1

2

{
(q2)2

ω − Z
+
g

2
[ω − Z2]

}+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2
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+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
(q2)+

j+ 1
2
− (q2)−

j+ 1
2

)
−

a+
j− 1

2
a−
j− 1

2

a+
j− 1

2
− a−

j− 1
2

(
(q2)+

j− 1
2
− (q2)−

j− 1
2

)

−
a+
j− 1

2

{
(q2)2

ω − Z
+
g

2
[ω2 − Z2]

}−
j− 1

2

+ a+
j− 1

2

{
(q2)2

ω − Z
+
g

2
[ω − Z2]

}+

j− 1
2

a+
j− 1

2
− a−

j− 1
2

− g(h2)j
(
r(h1)−

j+ 1
2

+ Z−
j+ 1

2
− r(h1)+

j− 1
2
− Z+

j− 1
2

)
−

a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

{
g

2

(
ω+
j+ 1

2
− Z+

j+ 1
2

+ ω−
j+ 1

2
− Z−

j+ 1
2

)(
r(h1)+

j+ 1
2

+ Z+
j+ 1

2
− r(h1)−

j+ 1
2
− Z−

j+ 1
2

)}

+
a+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

{
g

2

(
ω+
j− 1

2
− Z+

j− 1
2

+ ω−
j− 1

2
− Z−

j− 1
2

)(
r(h1)+

j− 1
2

+ Z+
j− 1

2
− r(h1)−

j− 1
2
− Z−

j− 1
2

)}]
,

respectively, and then one can easily verify that RHS(4)
(4.25) = RHS(4)

(4.32).

5. Numerical examples

In this section, we test the proposed PCCU scheme on a number of numerical examples and demonstrate that
it outperforms the original CU scheme. We first study the single layer Saint-Venant system with discontinuous
bottom topography (Sect. 5.1) and then proceed with the more complicated two-layer shallow water equations
(Sect. 5.2).

In all of the numerical examples below:

– We use the constant gravitational acceleration g = 9.81;
– The systems of ODEs obtained as a result of the studied semi-discretizations have been integrated in time

using the second-order strong stability preserving (SSP) Runge-Kutta solver (the Heun method); see, e.g.,
[25, 26].

In Examples 5.1–5.3, we solve the initial values problems (IVPs), that is, we take sufficiently large com-
putational domains so that the solution remains flat at the boundaries so that we can safely use zero-order
extrapolation for all of the computed quantities there. In Example 5.4, a small barotropic perturbation is
imposed at the left boundary of the computational domain.

5.1. Saint-Venant system with discontinuous bottom topography

Example 5.1 (Dam-Break Problem). We begin with the case of single layer shallow water equations with the
following bottom topography:

Z(x) =


− 0.5, if x < 0.1− δ,

− 0.5− 0.2
δ

(x− 0.1 + δ), if 0.1− δ ≤ x ≤ 0.1 + δ,

− 0.9, if x > 0.1 + δ,

where δ is a parameter that can be used to control the steepness of the slope in B.
The initial data that correspond to a dam break are given by

ω(x, 0) = h(x, 0) + Z(x) =
{

1, if x < 0,
0, if x > 0,

q(x, 0) ≡ 0.
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Figure 2. Example 5.1: water surface ω computed using the PCCU and CU schemes for four
different values of δ = 0.05, 0.01, 0.005 and 0.001 and the corresponding bottom topographies.

We take four different values of δ = 0.05, 0.01, 0.005 and 0.001 and compute the solutions of the four
corresponding IVPs at the final time t = 0.1 using the second-order PCCU and CU schemes on the grid with
400 uniform finite-volume cells on the computational domain [−0.5, 0.5]. We note that in the case of the smallest
δ = 0.001, the bottom topography jumps down from −0.5 to −0.9 within the interval of size 2δ = 0.002, which
is smaller than ∆x = 0.0025, that is, in this case the bottom topography can be in fact considered discontinuous
for any practical purpose.

The computed solutions (water surface ω) are presented in Figure 2 together with the corresponding bottom
structures. As one can clearly see, when δ is sufficiently large (δ = 0.05), both PCCU and CU schemes give
quite similar results. They, however, become more and more different when δ is reduced, and for the smallest
δ = 0.001 they are already qualitatively different.

In order to verify that the PCCU solution is the accurate one, we perform the mesh refinement study of
both the PCCU and CU schemes in the case of δ = 0.001. We take a sequence of uniform grids with 800, 1600
and 3200 cells and report the obtained results in Figure 3. As one can see, both schemes seem to eventually
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Figure 3. Example 5.1: water surface ω computed by the PCCU (left panel) and CU (right
panel) schemes for δ = 0.001 using three different grids.

converge to the same solution, but the convergence of the PCCU scheme is much faster, which confirms the
high resolution and robustness of the proposed PCCU approach.

5.2. Two-layer shallow water equations

We now proceed with three examples for the two-layer shallow water equations. We restrict our consideration
to the case of a flat bottom topography Z(x) ≡ Const since the nonconservative interlayer exchange terms on
the RHS of (4.32) introduce a more severe computational challenge than the corresponding geometric source
terms.

Example 5.2 (Riemann Problem with Initially Flat Water Surface). In this example, we take Z(x) ≡ −2 and
consider the following initial data:

h1(x, 0) =
{

1.8, if x < 0,
0.2, if x > 0,

h2(x, 0) =
{

0.2, if x < 0,
1.8, if x > 0,

q1(x, 0) ≡ q2(x, 0) ≡ 0.

Note that initially the water surface is flat since ε(x, 0) = h1(x, 0) + h2(x, 0) + Z(x) ≡ 0.
We first apply the second-order PCCU and CU schemes on the grid with 400 uniform finite-volume cells on

the computational domain [−5, 5]. The solutions (water surface ε = h1 + h2 + Z and interface ω = h2 + Z)
computed at the final time t = 7 are reported in Figure 4. As we can see, both second order-schemes give similar
results, although small differences can be observed.

To see an advantage of the PCCU scheme, we now compute the same solution using the first-order PCCU
and CU schemes, which are obtained by using a piecewise constant reconstruction in (2.4), that is, by setting
U−
j+ 1

2
= U j and U+

j+ 1
2

= U j+1. We experimentally study the convergence of these two schemes by refining the
mesh and using 400, 800 and 1600 uniform cells. As one can see in Figure 5, the first-order PCCU solutions seem
to approach the corresponding second-order one, which is plotted both here and in Figure 4. This is, however,
not the case for the first-order CU scheme, which produces a sequence of the solutions that does not seem to
approach the corresponding second-order solution as can be clearly seen in Figure 6. This provides an additional
evidence of the robustness of the proposed PCCU approach.
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Figure 4. Example 5.2: water surface ε (left panel) and interface ω (right panel) computed
using the second-order PCCU and CU schemes.

Figure 5. Example 5.2: experimental convergence study for the first-order PCCU scheme:
Water surface ε (left panel) and interface ω (right panel) computed on three different grids. The
obtained results are compared with the second-order ones.

Example 5.3 (Isolated Internal Shock). We begin by considering the following IVP: the system (4.32) with
Z(x) ≡ Zref = Const and the Riemann initial data

U(x, 0) =
{

UL, if x < 0,
UR, if x > 0,

(5.1)

with
UR =

(
(h1)R, (q1)R, (h2)R, (q2)R

)T =
(
0.37002,−0.18684, 1.59310, 0.17416

)T (5.2)

and
UL =

(
(h1)L, (q1)L, (h2)L, (q2)L

)T =
(
1.22582,−0.03866, 0.75325, 0.02893

)T
, (5.3)
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Figure 6. Same as in Figure 5, but for the CU scheme.

which correspond to an isolated internal shock wave traveling to the right.
In order to apply the CU scheme to the IVP (4.32), (5.1)–(5.3), we need (as in [36]) to rewrite the system

(4.32) in the form (4.25) and properly select the constant Zref to ensure that ε = h1 + h2 + Zref is relatively
small. This is possible since according to (5.1)–(5.3) the jump in the water surface,

(h1)L + (h2)L − (h1)R − (h2)R = 0.01595,

is much smaller than the average water depth, which is

(h1)L + (h2)L + (h1)R + (h2)R
2

= 1.971095.

The following three choices of Zref seem to be reasonable:

(a) Zref = −
(
(h1)L + (h2)L

)
;

(b) Zref = −
(
(h1)R + (h2)R

)
;

(c) Zref = −
(
(h1)L + (h2)L + (h1)R + (h2)R

)
/2.

In what follows below, we will refer to the CU schemes applied to the IVP (4.25), (5.1)–(5.3) with Zref given
by one of the above options as CUa, CUb and CUc schemes, respectively. We would like to stress that as it has
been shown in Section 4.2, the PCCU solution is independent of the reference water surface level, that is, of the
choice of Zref .

We compute the solution of the IVP (4.32), (5.1)–(5.3) at the final time t = 1 by the PCCU, CUa, CUb
and CUc schemes on the computational domain [−1, 1] using the grid with 1000 uniform finite-volume cells.
The obtained solutions (h1 + h2 and h2) are plotted in Figure 7, where it can clearly be seen that while the
PCCU and CUc schemes produce almost the same numerical solutions, the results obtained using the other two
versions of the CU scheme (CUa and CUb ones) are qualitatively different. This demonstrates an advantage of
the PCCU scheme, which is independent of the choice of the reference water surface level.

In the second part of this numerical example, we follow the ideas presented in [15] and compare the analytical
Hugoniot curve with the numerical ones. To this end, we fix the right state UR given by (5.2) and compute the
set of the left states UL that can be connected to UR in the phase space through an internal shock.
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Figure 7. Example 5.3: h1 + h2 (left panel) and h2 (right panel) computed using the PCCU,
CUa, CUb and CUc schemes.

We fist compute the analytical Hugoniot curve. According to the path-conservative theory [15, 20, 53], once
a family of paths Ψ

(
s; UL,UR

)
is selected, the shocks of the system should satisfy the generalized Rankine-

Hugoniot condition

F (UR)− F (UL)−
1∫

0

B
(
Ψ
(
s; UL,UR

)) dΨ
(
s; UL,UR

)
ds

ds = σ(UR −UL), (5.4)

where UL and UR are the left and right states that can be connected by a shock with speed σ. In particular, we
will select the family of straight line paths and then (5.4) gives a one-parameter Hugoniot curve. The relation
(5.4) has to be solved numerically for UL for different values of σ. Note that the right state (5.2) has been
selected in such a way that the obtained UL correspond to an internal shock.

Next, we use the PCCU scheme to numerically solve the family of Riemann problems in which the right
state is UR is given by (5.2) and UL runs along the Hugoniot curve. The speed of propagation and the limit
states of the shock are then computed in these numerical solutions by using the first-order divided difference
as a smoothness indicator. This computation has been performed using a uniform grid with 1000 cells in the
interval [−1, 1].

As it was stated in [15], one cannot expect the numerical solutions to converge to the weak shock solution
even when the same family of paths is used both for the definition of the jump conditions and the construction of
the numerical scheme. Moreover, one expects that the computed Hugoniot curve will diverge from the analytical
one in the presence of strong shocks; see [15].

We then do the same for the CUa, CUb and CUc schemes. We recall that the right state (5.2) is such that
the Hugoniot curve corresponds to an internal shock with a small jump at the water surface as can be seen in
Figure 7 (left), where the computed solution (h1 + h2) for a particular left state UL on the Hugoniot curve is
shown.

In Figure 8, we show the projection of the analytical and computed Hugoniot curves onto the h1-q1 and h2-q2

planes. We note that the PCCU scheme reproduces the analytical Hugoniot curve quite well although some
differences may appear when the left state is far from the fixed right state. The situation with the CU schemes
is quite different as only the Hugoniot curve computed by the CUc scheme agrees well with the analytical and
PCCU Hugoniot curves. This means that the shocks obtained by the CU scheme will depend on the chosen
reference level Zref , while the PCCU is independent of that choice and thus much more robust.
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Figure 8. Example 5.3: projections onto the h1 − q1 (left panel) and h2 − q2 (right panel)
planes of the analytical Hugoniot curve and four numerical ones, computed using the PCCU,
CUa, CUb and CUc schemes.

Example 5.4 (Barotropic Tidal Flow). The last example is designed to mimic a tidal wave by imposing periodic
in time boundary conditions at the left end of the computational domain.

We use the initial data (5.1) with

UR =
(
(h1)R, (q1)R, (h2)R, (q2)R

)T =
(
0.37002,−0.18684, 1.5931, 0.17416

)T
and

UL =
(
(h1)L, (q1)L, (h2)L, (q2)L

)T =
(
0.69914,−0.21977, 1.26932, 0.20656

)T
,

which correspond to one of the internal shocks captured in Example 3 in order to construct the Hugoniot curve.
We use a flat bottom topography and choose the reference water surface level

Z(x) ≡ Zref = −1
2

(
(h1)L + (h2)L + (h1)R + (h2)R

)
, (5.5)

which was the best option for the CU scheme according to the numerical experiments conducted in Example 3.
We take the computational domain [−10, 10] and impose open boundary conditions on the right and the

following periodic in time boundary conditions on the left for the h1 and h2 components:

h1(−10, t) = (h1)L + (h1)L
0.03
|Zref |

sin
(πt

50

)
, h2(−10, t) = (h2)L + (h1)L

0.03
|Zref |

sin
(πt

50

)
.

The values of q1 and q2 on the left edge of the computational domain are obtained by zero-order interpolation.
We numerically solve this initial-boundary value problem using the PCCU and CU and PCCU schemes on

the grid with 1000 uniform finite-volume cells on the time interval [0, 64]. In Figure 9, we plot the solutions
(water surface ε = h1 + h2 +Z and interface ω = h2 +Z) computed at times t = 10, 25, 60 and 64. As one can
observe, both PCCU and CU solutions exhibit quite similar behavior at small times (even at time t = 10 the
difference between the two solutions is not that significant). At larger times, however, the two schemes begin
to produce very different results (for instance, at times t = 25 and 60 reported in Fig. 9). Moreover, for even
larger times the CU solution begins to develop some spurious oscillations and will eventually become unstable.
This is not the case for the PCCU solution which remains stable at all times.
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Figure 9. Example 5.4: water surface ε (left panel) and interface ω (right panel) computed
using the PCCU and CU schemes at different times t = 10, 25, 60 and 64.
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We recall that in Example 5.3, the choice of the reference level (5.5) lead to the CU scheme (in fact, the CUc
scheme) that produced the results similar to the PCCU ones. However, imposing the barotropic perturbation
on the left boundary results in a totally different large time behavior of the solutions, computed by the two
studied schemes. This is another strong evidence of the robustness of the proposed PCCU scheme.

6. Conclusion

In this paper, we develop PCCU schemes for nonconservative 1D hyperbolic systems of nonlinear PDEs. To
this end, we rewrite the CU scheme in the form of path-conservative schemes showing that the main drawback
of the original CU approach is the fact that the jump of the nonconservative product terms across cell interfaces
is not taken into account. From the mathematical point of view, the path-conservative correction makes the
numerical method to become formally consistent with a particular definition of weak solutions, while the original
CU scheme is only consistent with smooth solutions. The formal consistency makes the PCCU scheme robust
and helps to obtain better results than the original CU scheme.

We would also like to point out that when the terms that account for the contribution of the jumps of the
nonconservative products at the cell interfaces are included, the first-order semi-discrete PCCU scheme coincides
with the semi-discrete version of the path-conservative HLL solver.

The well-balanced property of the PCCU scheme is discussed and well-balanced PCCU solvers for both the
single- and two-layer shallow-water systems are proposed.

Another important feature of the proposed PCCU schemes is related to the fact that application of the
original CU scheme to the two-layer shallow-water system strongly depends on the formulation of the problem.
A clear advantage of the proposed PCCU scheme is that when linear paths are considered, our scheme provides
precisely the same discretization for both the original and modified formulations of the problem. In fact, this is a
general property of path-conservative schemes, which are formally consistent with a particular definition of weak
solution (given by the path) and therefore produce the same discretization independently of the formulation of
the PDE provided the same conserved variables are used.

Finally, several numerical results clearly demonstrate a superb performance of the PCCU scheme, its robust-
ness and ability to achieve very high resolution.
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