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Abstract

We introduce an operating splitting based stochastic Galerkin method for the Saint-

Venant system of shallow water equations with random inputs. The method uses a general-

ized polynomial chaos approximation in the stochastic Galerkin framework (referred to as

the gPC-SG method). It is well-known that such approximations for nonlinear hyperbolic

systems do not necessarily yield globally hyperbolic systems: their Jacobians may contain

complex eigenvalues and thus trigger instabilities and ill-posedness. In this paper, we over-

come this difficulty by extending the gPC-SG method from [A. Chertock, S. Jin and A.

Kurganov, An operator splitting based stochastic Galerkin method for the one-dimensional

compressible Euler equations with uncertainty, Submitted], where it was developed for the

Euler equations of gas dynamics. The main idea is to split the underlying system into a

linear hyperbolic system and a nonlinear degenerated hyperbolic system, which can be suc-

cessively solved as scalar conservation laws with variable coefficients and source terms. The

gPC-SG method, when applied to each of these subsystems, results in globally hyperbolic

systems. We then utilize the second-order semi-discrete central-upwind scheme based well-

balanced scheme in order to exactly preserve the “lake at rest” steady states. This is a very

important feature of the proposed method since the lack of balance between the flux and

source terms may cause large artificial waves to emerge in the case the method is used on a

coarse grid, while using sufficiently fine mesh may be impractical. The performance of the

designed gPC-SG method is illustrated on a number of numerical examples.
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1 Introduction

In this paper, we consider the Saint-Venant system of shallow water equations, which was

derived back in 1871 in [4], but is still widely used in many practical applications ranging from

modeling water flows in rivers, lakes and coastal areas to oceanography and atmospheric sciences.

We study the Saint-Venant system with uncertainties, which can appear in the source terms,

initial or boundary data due to empirical approximations or measuring errors. Quantifying these

uncertainties is important for many applications since it helps to conduct sensitivity analysis and

to provide guidance for improving the models [1, 7, 8, 24,28,29].

In the one-dimensional (1-D) case, the studied system reads asht + qx = 0,

qt +
(
hu2 +

g

2
h2
)
x

= −ghBx,
(1.1)

where x is the spatial variable, t is the time, h(x, t,z) is the water depth, u(x, t,z) is the mean

velocity, q := hu is the discharge, g is the gravitational constant, and B(x, z) is the bottom

topography function. Note that h, u, q and B depend on the random variable z. We consider

the case when uncertainty can arise from the bottom and/or initial data:

h(x, 0, z) = h0(x, z), q(x, 0, z) = q0(x, z). (1.2)

The shallow water system (1.1) is hyperbolic since the Jacobian of its flux has two distinct

eigenvalues λ± = u±
√
gh. It is also easy to show that (1.1) admits a family of smooth steady-

state solutions,

q(x, z) = C1(z),
u(x, z)2

2
+ g
(
h(x, z) +B(x, z)

)
= C2(z), (1.3)

among which are the so-called “lake at rest” equilibria satisfying

q(x, z) ≡ 0, h(x, z) +B(x, z) = C(z) (1.4)

are the most physically relevant since in many practical situations the water waves can be viewed

as, in fact, small perturbations of the “lake at rest” state. Starting from [12], numerical methods

that are capable of exactly preserving the steady-states solutions (1.3) (or at least the “lake at

rest” states (1.4)) at the discrete level are usually referred to as well-balanced.

Our goal is to develop a well-balanced generalized polynomial chaos stochastic Galerkin

(gPC-SG) method for the Saint-Venant system (1.1) by extending the gPC-SG method recently

developed in [3] for the Euler equations of gas dynamics. In general, gPC-SG methods belong

to the class of intrusive polynomial chaos methods. These methods use the Galerkin approxima-

tion, which results in a system of deterministic equations, solving which will give the stochastic

moments of the solution of the original uncertain problem.

Existing gPC-SG methods have been successfully applied to many physical and engineering

problems, where spectral convergence can be observed if the underlying solution is sufficiently

smooth. The application of the gPC-SG approach to nonlinear hyperbolic systems, nevertheless,
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encounters major difficulties. For linear hyperbolic systems and scalar hyperbolic conserva-

tion laws, the gPC-SG approximation yields a system which is always hyperbolic, thus gPC-SG

methods are viable methods for uncertainty quantification for such equations [38]. The gPC-

SG approximation also remains hyperbolic if the original system is symmetric, which motivated

its use in [13] for the Hamilton-Jacobi equations with uncertainty, since the gradient of the

Hamilton-Jocobi equations give a symmetric hyperbolic system. However, when applied to non-

linear hyperbolic systems, gPC-SG methods result in systems which are not necessarily globally

hyperbolic, since their Jacobian matrices may contain complex eigenvalues. Such examples were

given in [5]. There have been some literatures that address this issue. In [5], for the compressible

Euler equations, by using the gPC approximation for the entropy variables one guarantees the

hyperbolicity, since under the entropy variables the system is symmetric hyperbolic. In this

approach, one needs to change from entropy to conservative variables by solving a minimization

problem at every mesh point and time step, which can be computationally costly. Another

approach is built upon the Roe variables, which locally linearizes the underlying PDE system,

as proposed in [31]; see also [32, 36]. This approach is restricted to systems which admit the

Roe linearization and requires switching between the Roe and original variables at every grid

point and every time step by solving nonlinear algebraic systems using the trust-region-dogleg

algorithm.

In [3], we studied the Euler equations of gas dynamics and obtained the hyperbolic systems

for the gPC coefficients in the following manner. We first used the operator splitting approach to

split the Euler system into the three simpler subsystems: one of them is linear and the other two

are degenerate nonlinear systems, which, in fact, reduce to scalar hyperbolic equations. We then

applied the gPC-SG method to each of the subproblems and the resulting system for the gPC

coefficients is guaranteed to be hyperbolic since it is well-known that for linear hyperbolic systems

and nonlinear scalar equations, gPC-SG methods yield globally hyperbolic discretizations. In

the current work, we extend this approach to the system of shallow water equations (1.1).

In gPC-SG methods, the solution of the underlying system is sought in terms of orthogonal

polynomial series [9, 40], whose coefficients satisfy deterministic (systems of) time-dependent

PDEs. Since in our approach the obtained gPC-SG system of equations for the coefficients is

guaranteed to be hyperbolic, we follow [3] and numerically solve it by a semi-discrete second-order

central-upwind scheme, which has been originally introduced in [17,18,20] as a Riemann-problem-

solver-free black box solver for general multidimensional hyperbolic systems of conservation laws

and then extended to the Saint-Venant system of shallow water equations in [16,19]. One of the

advantages of the central-upwind schemes is their direct applicability to systems with complicated

(generalized) Riemann problem solutions including the systems for the gPC coefficients arising

in the process of application of gPC-SG methods.

This paper differs from [3] in two aspects. First, the operator splitting framework presented

in [3] is problem specific. The splitting for the shallow-water equations is indeed different from

that for the Euler equations. Second, the issue of well-balancedness, which is essential for shallow-

water equations with (possibly discontinuous) bottom topography, is not addressed in [3].

An alternative, the non-intrusive approach called the stochastic collocation method [39], for

shallow water equations with uncertainty was introduced in [28,29]. Some comparisons between

the stochastic Galerkin method and the stochastic collocation method for the diffusion equation

were given in [6]. A stochastic well-balanced gPC-SG method for scalar hyperbolic balance law
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was given in [15].

The rest of the paper is organized as follows. In Section 2, we briefly review the gPC-SG

method for a general hyperbolic system of balance laws. In Section 3, we describe a splitting

approach, which is validated in Section 3.1, where we present the modified equation analysis

to provide some guidance about the stability property of the proposed splitting approach, and

in Sections 3.3, where we numerically solve the deterministic Saint-Venant system using the

well-balanced discretization presented in Section 3.2. Then, in Section 4, we explain how the

gPC-SG method can be directly applied to each one of the subsystems and finally, in Section

5, we demonstrate the performance of the resulting gPC-SG method on a number of numerical

examples with random inputs.

2 The gPC-SG method – an overview

In this section, we briefly describe the gPC-SG method for the hyperbolic system of balance

laws

Ut + F (U , x,z)x = R(U , x,z), x ∈ R, t > 0, z ∈ Ω ⊂ Rd, (2.1)

where U(x, t,z) is the unknown vector function, F (U , x,z) is the flux, and R(U , x,z) is the

source term. In the gPC expansion, the solution of the system of stochastic PDEs (2.1) is sought

in terms of an orthogonal polynomial series in z ( [40]):

U(x, t,z) ≈ UN (x, t,z) =

M−1∑
i=0

Ûi(x, t)Φi(z), M =

(
d+N

d

)
, (2.2)

where {Φm(z)} are d-variate orthonormal polynomials of degree up to N ≥ 1 from Pd
N satisfying∫

Ω

Φi(z)Φ`(z)µ(z) dz = δi`, 0 ≤ i, ` ≤M − 1, M = dim
(
Pd
N

)
. (2.3)

Here, µ(z) is the probability density function of z and δi` is the Kronecker symbol. The choice

of the orthogonal polynomials depends on the distribution function of z. For example, a Gaus-

sian distribution defines the Hermite polynomials; a uniform distribution defines the Legendre

polynomials, etc. Note that when the random dimension d > 1, {Φi(z)} are multidimensional

polynomials of degree up to N of z. An ordering scheme for multiple index is required to re-order

the polynomials into a single index i in (2.2). Typically, the graded lexicographic order is used;

see, e.g., [38, Section 5.2].

For the PDE system with random inputs (2.1), the gPC-SG method seeks to satisfy the

governing equations in a weak form by ensuring that the residual is orthogonal to the gPC

polynomial space. Substituting the approximation UN from (2.2) into the governing system

(2.1) and using the Galerkin projection yield

(Ûi)t + (F̂i)x = R̂i, 0 ≤ i ≤M − 1, (2.4)
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where

F̂i =

∫
Ω

F

(M−1∑
j=0

Ûj(x, t)Φj(z), x,z

)
Φi(z)µ(z) dz,

R̂i =

∫
Ω

R

(M−1∑
j=0

Ûi(x, t)Φi(z), x,z

)
Φi(z)µ(z) dz,

0 ≤ i ≤M − 1. (2.5)

This is a system of deterministic equations for the expansion coefficients Ûi, i = 0, . . . ,M − 1.

In most cases, the equations in (2.4) are coupled.

For linear or symmetric nonlinear hyperbolic systems as well as in the nonlinear scalar case,

the gPC system (2.4) is hyperbolic. However, if the nonlinear hyperbolic system (2.1) is not

symmetric (as in the case of the Saint-Venant system (1.1) studied here), the system (2.4) is not

always hyperbolic since its Jacobian may encounter complex eigenvalues. In the latter case, the

initial and initial-boundary value problems for (2.4) are ill-posed and the gPC-SG method can

be unstable. In what follows, we shall present a way to overcome this difficulty by introducing

an operator splitting approach for the system (1.1), which will guarantee that the gPC-SG

discretization of each of the split subsystems always results in a globally hyperbolic system for

the expansion coefficients.

3 An operator splitting

We start by splitting the system (1.1) into the following two subsystems:{
ht + qx = 0,

qt + a2hx = 0,
(3.1)

and 
ht = 0,

qt +

[
q2

h
+
g

2
h2 − a2h

]
x

= −ghBx.
(3.2)

The first subsystem (3.1) is a linear hyperbolic system whose Jacobian has two distinct real

eigenvalues λ± = ±a, where the parameter a > 0 is to be chosen to satisfy the following

subcharacteristic condition:

− a ≤ u−
√
gh < u+

√
gh ≤ a. (3.3)

The second system (3.2) is essentially a scalar Burgers equation for q with variable coefficient

and source term since h remains constant in time in (3.2). Furthermore, we choose a to be larger

than the characteristic speed for in the second equation of the second subsystem (3.2). This

yields the following choice:

a = sup
u

{
max

(
|u|+

√
gh, 2|u|

)}
.

It is easy to check that under the subcharacteristic condition (3.3) each of the subsystem in

the above splitting is strictly hyperbolic. Therefore, after the gPC-SG approximation, each of
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the above systems gives a globally hyperbolic system for the gPC coefficients.

3.1 A modified equation analysis

To gain some understanding of how a shock capturing scheme based on this splitting could

yield a numerically stable discretization, we perform a modified equation analysis of the following

version of the first-order Lax-Friedrichs scheme applied to equations (3.1) and (3.2) using the

first-order splitting approach (A.2) (see Appendix A), in the case of flat bottom topography

(B = 0):
h∗j − hnj

∆t
+
qnj+1 − qnj−1

2∆x
=

a

2∆x
(hnj+1 − 2hnj + hnj−1),

q∗j − qnj
∆t

+ a2
hnj+1 − hnj−1

2∆x
=

a

2∆x
(qnj+1 − 2qnj + qnj−1),

hn+1
j = h∗j ,

qn+1
j − q∗j

∆t
+

[
(q∗j+1)2

h∗
j+1

+ g
2 (h∗j+1)2 − a2h∗j+1

]
−
[

(q∗j−1)2

h∗
j−1

+ g
2 (h∗j−1)2 − a2h∗j−1

]
2∆x

=
b

2∆x
(q∗j+1 − 2q∗j + q∗j−1).

Here, ∆x is the mesh size and ∆t is the timestep, the point values of h and q are computed at

the grid points (xj = j∆x, tn = n∆t), and b ≈ 2‖u‖∞. The superscripts n and n + 1 indicate

the quantities at times tn and tn+1, respectively, while ∗ denotes an intermediate state obtained

at the end of the first splitting substep.

The corresponding semi-discrete (discrete in time and continuous in space) modified equations

are 
h∗ − hn

∆t
+ qnx =

a

2
∆xhnxx,

q∗ − qn

∆t
+ a2hnx =

a

2
∆xqnxx,

and 
hn+1 = h∗,

qn+1 − q∗

∆t
+

[
(q∗)2

h∗
+
g

2
(h∗)2 − a2h∗

]
x

=
b

2
∆xq∗xx.

We now eliminate h∗ and q∗ and drop the superscript n for all of the quantities computed at

time level tn to obtain

qn+1 − q
∆t

+ a2hx −
a

2
∆xqxx

+

[
(q − a2∆thx + a

2 ∆t∆xqxx)2

h−∆tqx + a
2 ∆t∆xhxx

+
g

2

(
h−∆tqx +

a

2
∆t∆xhxx

)2

− a2
(
h−∆tqx +

a

2
∆t∆xhxx

)]
x
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=
b

2
∆x
(
q − a2∆thx +

a

2
∆t∆xqxx

)
xx
. (3.4)

Keeping only the O(1), O(∆x) and O(∆t) terms on the right-hand side of (3.4) and dropping

the higher-order terms result in

qn+1 − q
∆t

− a

2
∆xqxx +

[
q2 − 2a2∆tqhx
h−∆tqx

+
g

2

(
h2 − 2∆thqx

)]
x

+ a2∆tqxx =
b

2
∆xqxx.

The last equation can be further simplified to give

qn+1 − q
∆t

+

[
q2

h
+
g

2
h2

]
x

= ∆t
(

2a2(uhx)x − (u2qx)x + g(hqx)x − a2qxx

)
+

∆x

2
(a+ b)qxx.

Next, we Taylor expand qn+1 about tn and use (1.1) to express all of the time derivatives in

terms of the corresponding space derivatives. A necessary condition for the method to be stable

is that the coefficient of qxx is positive, which is guaranteed if the following timestep restriction

is satisfied:

sup

(
5u2 − gh+ 2a2

a+ b

)
∆t

∆x
≤ 1 .

Notice that the CFL condition for the Lax-Friedrichs method applied to the original unsplit

system (1.1) is given by

sup
(
|u|+

√
gh
) ∆t

∆x
≤ 1,

and since b ≈ 2‖u‖∞, one has

5u2 − gh+ 2a2

a+ b
& sup

(
|u|+

√
gh
)
,

and thus we conclude that a smaller ∆t is required for the numerical solution of the split system

to be stable compared to the unsplit case.

3.2 A well-balanced discretization

While there have been many numerical methods available in the literature for solving linear

hyperbolic systems like (3.1) and nonlinear scalar equations like (3.2) (see, e.g., [22] and references

therein), here the additional difficulty is associated with the fact that the resulting gPC-SG

approximation should not only lead to a globally hyperbolic system, but also be well-balanced.

In order to be able to exactly preserve the “lake at rest” steady state solution (1.4) at each

substep of the splitting algorithm, we adopt the well balanced strategy from [16] according to

which one needs to work with the equilibrium variables, the water surface w := h + B and

discharge q, rather than with the conservative ones (h and q). Following [16], we rewrite the

shallow water system (1.1) in the equivalent form:
wt + qx = 0,

qt +

[
ψ + g

(
1

2
w2 − wB

)]
x

= −gwBx,
(3.5)
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where we use the notation

ψ :=
q2

w −B
. (3.6)

The corresponding subsystems then become:{
wt + qx = 0,

qt + a2wx = 0,
(3.7)

and 
wt = 0,

qt +

[
ψ + g

(
1

2
w2 − wB

)
− a2w

]
x

= −gwBx.
(3.8)

3.3 Numerical validation of the operator splitting

Before proceeding further with deriving the gPC-SG method for the systems (3.7) and (3.8),

we check the validity of the hyperbolic splitting on the purely deterministic shallow water model,

in which neither the bottom topography function nor the initial data depend on a random variable

z. To this end, we numerically solve the system (3.5), (3.6) using two different methods.

We first directly apply the second-order semi-discrete central-upwind scheme from [19] (briefly

described in Appendix B in the context of general hyperbolic systems of balance laws) to the

original system (3.5), which can be written in the vector form (2.1) with

U =

(
w

q

)
, F =

(
q

ψ + g
(

1
2w

2 − wB
)) , R =

(
0

−gwBx

)
.

The semi-discrete central-upwind discretization of the system (3.5) is thus obtained from (B.7),

(B.8) with the cell averages U j = (wj , qj)
T defined in (B.1), the point values U±

j+ 1
2

= (w±
j+ 1

2
, q±

j+ 1
2

)T

computed according to (B.6) and the one-sided local speeds of propagation (B.5) given by

a+
j+ 1

2

= max
{
u−
j+ 1

2
+

√
g(w−

j+ 1
2
−Bj+ 1

2
), u+

j+ 1
2

+

√
g(w+

j+ 1
2
−Bj+ 1

2
), 0

}
,

a−
j+ 1

2

= min
{
u−
j+ 1

2
−
√
g(w−

j+ 1
2
−Bj+ 1

2
), u+

j+ 1
2
−
√
g(w+

j+ 1
2
−Bj+ 1

2
), 0

}
,

where

u±
j+ 1

2
=

q±
j+ 1

2

w±
j+ 1

2
−Bj+ 1

2

, Bj+ 1
2

= B(xj+ 1
2

). (3.9)

As it has been mentioned above, the shallow water system (3.5) admits steady-state solutions

and therefore it is necessary to solve it by a well-balanced scheme. This can be achieved by

approximating the second component in the source term R by a special quadrature, which

guarantees the well-balancedness of the resulting scheme. Following [16,19], we compute the cell

averages Rj as

Rj =

(
0,−gwj

Bj+ 1
2
−Bj− 1

2

∆x

)T

. (3.10)
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For the splitting approach, we implement the second-order Strang operator splitting method

(A.3); see Appendix A. Each of the subsystems (3.7) and (3.8) is again solved using the second-

order semi-discrete central-upwind scheme described in Appendix B. The first system (3.7) is a

linear system of conservation laws of the form (2.1) with

U =

(
w

q

)
, F =

(
q

a2w

)
, R = 0, (3.11)

for which the central-upwind scheme (B.7), (B.8) applied with a+
j+ 1

2

= −a−
j+ 1

2

≡ a ∀j reads

d

dt
U j = −

Hj+ 1
2
−Hj− 1

2

∆x
, Hj+ 1

2
=

F (U−
j+ 1

2

)− F (U+
j+ 1

2

)

2
− a

2

[
U+

j+ 1
2

−U−
j+ 1

2

]
. (3.12)

The second system (3.8) is actually reduced to a scalar hyperbolic balance law (2.1) for q with

U = q, F = ψ + g

(
1

2
w2 − wB

)
, R = −gwBx, (3.13)

which is also solved by the central-upwind scheme (B.7), (B.8) with the local speeds

a+
j+ 1

2

= max
{

2u−
j+ 1

2
, 2u+

j+ 1
2
, 0
}
, a−

j+ 1
2

= min
{

2u−
j+ 1

2
, 2u+

j+ 1
2
, 0
}
,

and the well-balanced source term quadrature Rj taken as the second component in (3.10).

Once the two numerical methods are constructed, we run numerical simulations for a dam

break over the nonflat bottom topography

B(x) =

{
0.1 + 0.125(cos(5πx) + 1), x < 0,

0.1, x > 0.
(3.14)

The gravitational constant g = 1 and the initial data are

w(x, 0) =

{
1, x < 0,

0.5, x > 0,
q(x, 0) ≡ 0. (3.15)

The problem (1.1), (3.14), (3.15) is numerically solved by both unsplit and split approaches.

The results computed on a uniform grid with ∆x = 1/400 at time t = 0.8 are plotted in Figure

3.1, which shows a good agreement between the two solutions.

This example indicates that the splitting approach results in a good shock capturing scheme

in the deterministic setting, helping to build the confidence for the stochastic problem.
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Figure 3.1: Shallow water equations: w (left) and q (right) computed by both the unsplit and split
approaches.

4 The gPC-SG approximation

We now derive a gPC-SG scheme for the systems (3.7) and (3.8). To this end, we seek

polynomial approximations of w, q, p and B in the following form:

wN (x, t,z) =

N∑
i=0

ŵi(x, t)Φi(z), qN (x, t,z) =

N∑
i=0

q̂i(x, t)Φi(z),

ψN (x, t,z) =

N∑
i=0

ψ̂i(x, t)Φi(z), BN (x, z) =

N∑
i=0

B̂i(x)Φi(z).

(4.1)

Substituting (4.1) into both (3.7) and (3.8) and conducting the Galerkin projection yield the

following equations for the gPC coefficients {ŵi} and {q̂i} for all i = 0, . . . N :{
(ŵi)t + (q̂i)x = 0,

(q̂i)t + a2(ŵi)x = 0,
(4.2)

and 
(ŵi)t = 0,

(q̂i)t +

ψ̂i + g

N∑
k,`=0

(
1

2
ŵkŵ` − ŵkB̂`

)
Sk`i − a2ŵi


x

= −g
N∑

k,`=0

ŵk(B̂`)xSk`i,
(4.3)

where

Sk`i =

∫
Ω

Φk(z)Φ`(z)Φi(z)µ(z) dz for all k, `, i = 0, . . . , N. (4.4)
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As in, for example, [25], the gPC coefficients ψ̂i needed in (4.3) can be computed by applying

the gPC-SG approximation of the relation (3.6) written as (w −B)ψ = q2:

N∑
k,`=0

ψ̂k(ŵ` − B̂`)Sik` =

N∑
k,`=0

q̂kq̂`Sik`, i = 0, . . . , N, (4.5)

and once {q̂i}, {ŵi} and {B̂i} are given, one can solve the linear system (4.5) to obtain {ψ̂i}.

Remark 4.1 When applying the gPC-SG to the relation (w −B)ψ = q2, for the exact value of

w −B = h > 0, one would obtain the following linear system for {ψ̂i} for all i = 0, . . . N :

N∑
k=0

ψ̂k

∫
Ω

h(z)Φi(z)Φk(z)µ(z) dz =

N∑
k,`=0

q̂kq̂`Sik`. (4.6)

For h > 0, the coefficient matrix on the left-hand side of the linear system (4.6) is symmetric

positive definite; see, e.g., [41]. Thus, the system (4.6) is invertible. The linear system (4.5) is

obtained by approximating h = w − B ≈
∑N

`=0(ŵ` − B̂`)Φ`. Thus, the entries in the coefficient

matrix in (4.5) are just the gPC approximation of those in (4.6), and they are spectrally close to

each other for smooth solutions. In the general case, there is a lack of analysis on the inevitabil-

ity of the linear system (4.5), but we have never encountered any problems in our numerical

simulations.

For the spatial discretizations of the systems (4.2) and (4.3), we again apply the second-order

semi-discrete central-upwind scheme described in Appendix B. Here, for each i = 0, . . . , N in

(4.2), we have a system of conservation laws of the form (2.1) with

Ui =

(
ŵi

q̂i

)
, Fi =

(
q̂i

a2ŵi

)
, Ri = 0,

and thus apply the central upwind scheme (B.7), (B.8) with a+
j+ 1

2

= −a−
j+ 1

2

≡ a ∀j to each one

of the above N + 1 systems. The resulting schemes for each i = 0, . . . , N read

d

dt
(Ui)j = −

(Hi)j+ 1
2
− (Hi)j− 1

2

∆x
,

(Hi)j+ 1
2

=
Fi

(
(Ui)

−
j+ 1

2

)
− Fi

(
(Ui)

+
j+ 1

2

)
2

− a

2

[
(Ui)

+
j+ 1

2

− (Ui)
−
j+ 1

2

]
.

The second system (4.3) is now a set of N decoupled scalar hyperbolic equations for {q̂i},
which still can be put into the form (2.1) with

Ui = q̂i, Fi = ψ̂i + g

N∑
k,`=0

(
1

2
ŵkŵ` − ŵkB̂`

)
Sik` − a2ŵi, Ri = −g

N∑
k,`=0

ŵk(B̂`)xSik`,

each of which is solved by the central-upwind scheme (B.7), (B.8) with the local speeds estimated

using the leading (zeroth) terms in the gPC expansions (4.1) as

a+
j+ 1

2

= max
{

2û−
j+ 1

2

, 2û+
j+ 1

2
, 0
}
, a−

j+ 1
2

= min
{

2û−
j+ 1

2

, 2û+
j+ 1

2
, 0
}
.
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Here, we have used the following notation:

û±
j+ 1

2

:=
(q̂0)±

j+ 1
2

(ŵ0)±
j+ 1

2

− (B̂0)±
j+ 1

2

.

Well-balanced property. It should be observed that the resulting central-upwind scheme for

the gPC systems (4.2), (4.3) is well-balanced in the sense that it is capable of exactly preserving

the “lake at rest” steady states (1.4). Indeed, for the state (1.4) one has ŵi ≡ Const, q̂i ≡ 0 and

ψ̂i ≡ 0 for all i = 0, . . . , N . One can easily show that substituting these constant quantities into

the central-upwind scheme for (4.2) and (4.3) results in the following system of ODEs for each

i = 0, . . . , N and each finite-volume cell Ij :
d(ŵi)j
dt

= − q̂i − q̂i
∆x

= 0,

d(q̂i)j
dt

= −a2 ŵi − ŵi

∆x
= 0,

and 

d(ŵi)j
dt

= 0,

d(q̂i)j
dt

= − ψ̂i − ψ̂i

∆x
+ a2 ŵi − ŵi

∆x
− g

2

N∑
k,`=0

ŵkŵ`Sk`i − ŵkŵ`Sk`i

∆x

+ g

N∑
k,`=0

ŵk

(B̂`)j+ 1
2
− (B̂`)j− 1

2

∆x
Sk`i − g

N∑
k,`=0

ŵk

(B̂`)j+ 1
2
− (B̂`)j− 1

2

∆x
Sk`i = 0,

respectively. This proves that the steady state (1.4) is exactly preserved by the designed central-

upwind scheme.

5 Numerical examples

In this section, we illustrate the performance of the proposed gPC-SG method on a number

of numerical examples. The randomness/uncertainty can enter the problem through either the

initial conditions (Example 1) or bottom topography (Example 2). For simplicity, we will always

assume a 1-D random variable z obeying the uniform distribution on [−1, 1], thus the Legendre

polynomials are used as the gPC basis. The mean and standard deviation of the computed

solution U , which are shown in the figures below, are given by

E[U ] = Û0, σ[U ] =

N∑
i=1

(Ûi)
2, (5.1)

where Ûi, i = 0, . . . , N are the computed gPC coefficients of U .

In all of the examples, the second-order semi-discrete central-upwind scheme (B.7), (B.8) was

implemented for the spatial discretization, the piecewise linear interpolants were constructed

using the minmod limiter (B.3), (B.4) with θ = 1.3, and the arising systems of ODEs were

12



numerically integrated by the three-stage third-order strong stability-preserving (SSP) Runge-

Kutta method [10,11].

Example 1 (A perturbed water surface). In the first example, we numerically solve the

system (1.1) with g = 1 and the following deterministic bottom topography (see Figure (5.1)):

B(x) =


0.25(cos(5π(x+ 0.35)) + 1), − 0.55 < x < −0.15,

0.125(cos(10π(x− 0.35)) + 1), 0.25 < x < 0.45,

0, otherwise.

The initial data (also shown in Figure (5.1)) corresponds to a random perturbation with maxi-

mum amplitude δ = 0.001 of the stationary steady-state solution w ≡ 1, u ≡ 0. The system is

considered in the computational domain [−1, 1] with the outflow boundary conditions imposed

at both end points.

Figure 5.1: Example 1: Initial state and bottom topography. The water surface plot is not to scale.

The perturbation, initially located at [−0.05, 0.05], splits into two pulses moving in opposite

directions. When the pulses interact with the nonflat part of the bottom, a complicated surface

wave structure is developed. This is illustrated in Figures 5.2 and 5.3, where we plot the mean

and standard deviation of the water surface w (left figure) and discharge q (right figure) computed

at time t = 0.8 using the well-balanced gPC-SG method on different uniform spatial grids with

∆x = 1/100, 1/400 and 1/1600 and with N = 8 (the highest degree in the gPC expansion).

In order to demonstrate the importance of the well-balanced property, we show in Figure

5.4, the mean of the solution, w (left) and q (right) computed by the proposed gPC-SG method

with the spatial discretization performed using a non-well-balanced version of the second-order

semi-discrete central-upwind scheme (B.7), (B.8). The latter is obtained by replacing the well-

balanced quadrature (3.10) with the midpoint one,

Rj = (0,−gwjBx(xj))
T
.

As one can see, the solution computed by the non-well-balanced scheme using a coarse mesh

13



Figure 5.2: Example 1: Mean of w (left) and q (right) computed by the well-balanced gPC-SG
method on different grids.

Figure 5.3: Example 1: Standard deviation of w (left) and q (right) computed by the well-balanced
gPC-SG method on different grids.

with ∆x = 1/100 contains unphysical oscillations of the magnitude comparable to the size of

the physical waves (those captured by the well-balanced scheme, see Figure 5.2). Moreover, the

magnitude of the oscillations decreases quite slowly when the mesh is refined, which confirms

that the well-balanced property is essential. We note that the importance of using well-balanced

gPC-SG for hyperbolic balance laws with random inputs was addressed in [15].

Example 2 – A perturbed bottom topography. In this section, we consider the same

example as in Section 3.3, but with uncertain bottom topography. Namely, we solve the shallow

water system (1.1) with g = 1, perturbed function (3.14), namely,

B(x, z) =

{
0.125(cos(5πx) + 1) + 0.1z, x < 0.1,

0.1z, otherwise,

14



Figure 5.4: Example 1: Mean of w (left) and q (right) computed by the non-well-balanced gPC-SG
method on different grids.

and subject to the same deterministic Riemann initial data as in (3.15).

The problem is numerically solved by the well-balanced gPC-method. The results (the mean

and standard deviation of the water surface w and discharge q) computed on uniform grids with

∆x = 1/100, 1/400 and N = 8 at time t = 0.8 are plotted in Figures 5.5 and 5.6, which show a

good agreement of the mean with the results shown in Figure 3.1. We have also performed the

same numerical experiments using a higher-order polynomial expansion in z with N = 16. The

obtained results (not reported here for brevity) are almost identical to the N = 8 results.

Figure 5.5: Example 2: Mean of w (left) and q (right) computed by the well-balanced gPC-SG
method on different grids. The solid lines in the left figure represent the bottom topography with
perturbation.
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Figure 5.6: Example 2: Standard deviation of w (left) and q (right) computed by the well-balanced
gPC-SG method on different grids.
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A The operator splitting

In this section, we give an account of the operator splitting approach, which can be briefly

described as follows. Consider the system (2.1) and assume that it can be split into two subsys-

tems:

Ut + F1(U)x = 0, Ut + F2(U)x = 0, (A.1)

where F = F1 + F2 and S1,S2 denote the exact solution operators associated with the corre-

sponding subsystems.

Let us assume that the solution of the original system (2.1) is available at time t. We then

introduce a (small) time step ∆t and evolve the solution of (2.1) from t to t+ ∆t in 2 substeps,

which result in the following approximate solution at time t+ ∆t:

U(x, t+ ∆t, z) = S2(∆t)S1(∆t)U(x, t,z). (A.2)

In general, if all solutions involved in the splitting algorithm (A.1), (A.2) are smooth, the method

is first-order accurate; see, e.g., [26, 27,33].

Higher-order operator splitting algorithms can be derived by considering additional substeps.
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For instance, one time step of the second-order Strang splitting method [26, 27,33] consists of 3

substeps:

U(x, t+ ∆t, z) = S1(∆t/2)S2(∆t)S1(∆t/2)U(x, t,z). (A.3)

We also refer the readers to [14,21,34,42], where higher-order operator splitting methods can be

found.

In practice, the exact solution operators S1 and S2 are to be replaced by their numerical

approximations. Note that if the obtained subproblems are of a different nature, they can be

solved by different numerical methods — this is one of the main advantages of the operator

splitting technique.

B The semi-discrete second-order central-upwind scheme

In this section, we briefly describe the central-upwind schemes for 1-D hyperbolic systems

of balance laws. These schemes are Godunov-type finite-volume methods. For their complete

description and derivation, we refer the reader to [16–19].

We consider a 1-D system of balance laws (2.1) and divide the computational domain into the

uniform cells Ij = [xj− 1
2
, xj+ 1

2
] of size |Ij | = ∆x centered at points xj = j∆x, j = jL, . . . , jR.

We assume that at certain time t the cell averages of the computed solution,

U j(t) =
1

∆x

∫
Ij

U(x, t) dx (B.1)

are available. From here on we suppress the time-dependence of all of the indexed quantities in

order to shorten the notation.

We use the cell averages (B.1) to reconstruct a non-oscillatory piecewise linear polynomial

Ũ(x) = U j + (Ux)j(x− xj), xj− 1
2
< x < xj+ 1

2
, ∀j, (B.2)

whose slopes (Ux)j are obtained using a nonlinear limiter, say, the generalized minmod one (see,

e.g., [23, 30,35,37]):

(Ux)j = minmod

(
θ
Uj+1 −Uj

∆x
,
Uj+1 −Uj−1

2∆x
, θ

Uj −Uj−1

∆x

)
, (B.3)

where the minmod function is defined by

minmod(z1, z2, . . .) :=


min(z1, z2, . . .), if zi > 0 ∀i,
max(z1, z2, . . .), if zi < 0 ∀i,
0, otherwise,

(B.4)

and the parameter θ ∈ [1, 2] controls the amount of numerical dissipation: The larger the θ the

smaller the numerical dissipation.

The global solution Ũ(x) is, in general, discontinuous at the interface points {xj+ 1
2
}. The

discontinuities propagate with right- and left-sided local speeds, which, for example, can be esti-
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mated by the smallest and largest eigenvalues λmin < . . . < λmax of the Jacobian ∂F
∂U . Namely,

a+
j+ 1

2

= max

{
λmax

(
∂F

∂U

(
U−

j+ 1
2

))
, λmax

(
∂F

∂U

(
U+

j+ 1
2

))
, 0

}
a−
j+ 1

2

= min

{
λmin

(
∂F

∂U

(
U−

j+ 1
2

))
, λmin

(
∂F

∂U

(
U+

j+ 1
2

))
, 0

}
,

(B.5)

where

U+
j+ 1

2

= U j + (Ux)j
∆x

2
, U−

j+ 1
2

= U j − (Ux)j
∆x

2
(B.6)

are the corresponding right and left values of the reconstruction (B.2).

Using the above construction we obtain the semi-discrete central-upwind scheme (see, e.g.,

[17, 18]):
d

dt
U j = −

Hj+ 1
2
−Hj− 1

2

∆x
+ Rj , (B.7)

where the numerical fluxes Hj+ 1
2

are given by

Hj+ 1
2

:=
a+
j+ 1

2

F (U−
j+ 1

2

)− a−
j+ 1

2

F (U+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+

j+ 1
2

−U−
j+ 1

2

]
(B.8)

with a±
j+ 1

2

and U±
j+ 1

2

computed according to (B.5) and (B.6), respectively.

Remark 2.1 If the ith component of F is identically zero, then we replace the numerical flux

(B.8) for this component with

H
(i)

j+ 1
2

= 0, ∀j.

The cell average of the source term Rj in (B.7) is approximated by an appropriate quadrature

for
1

∆x

∫
Ij

R(U(x, t), x, t) dx. The choice of the quadrature rule is very important especially in

cases when the underlying balance law admits steady state solutions. In such cases, one needs

to design a so-called well-balanced scheme — the scheme that exactly preserves the appropriate

steady states on the discrete level. We refer the reader to [2, 16, 19] and references therein for a

review of some well-balanced methods.

Remark 2.2 The semi-discretization (B.7) is a system of time dependent ODEs, which should

be solved by a sufficiently accurate and stable ODE solver.
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