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Abstract We consider optimization problems governed by scalar hyperbolic conser-
vation laws in one space dimension and study numerical schemes for the solution to
arising linear adjoint equations. We analyze convergence properties of adjoint and
gradient approximations on an unbounded domain x ∈R with a strictly convex flux.
This paper provides the theoretical foundation of the scheme introduced in [14]. We
also demonstrate that using a higher-order temporal discretization helps to substan-
tially improve both the efficiency and accuracy of the overall numerical method.

1 Introduction

We are concerned with numerical methods for optimization problems governed by
scalar hyperbolic conservation laws in one space dimension, which also could be
further generalized to nonlinear hyperbolic systems. These types of problems arise
in a variety of applications where inverse problems for the corresponding initial
value problems (IVP) are to be solved. We focus on numerical methods related to
those presented in [14]. In this paper, we discuss convergence properties of adjoint
and gradient approximations in one-dimensional (1-D) scalar problems on an un-
bounded domain x ∈ R with a strictly convex flux. The discussion will be based
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on a general existence results for first-order schemes presented in [20] utilized to
establish existence for a variety of other methods, see, e.g., [1, 7, 10, 21].

The optimization problem is formulated as follows: Find an optimal initial con-
dition u0(x) (control) such that the objective functional J is minimized:

min
u0

J(u(·,T );ud(·)), (1)

Here, the objective functional J is

J(u(·,T );ud(·)) :=
1
2

∞∫
−∞

(u(x,T )−ud(x))
2 dx (2)

and u(x, t) is the unique entropy solution of the following IVP for the 1-D scalar
hyperbolic conservation law:

ut + f (u)x = 0, x ∈ R, t ∈ (0,T ],
u(x,0) = u0(x), x ∈ R.

(3)

Here, u : R× [0,T ]→ R, u0(x) is an arbitrary bounded measurable function on R,
the corresponding nonlinear flux is denoted by f (u), and the terminal state ud(x) is
prescribed at time t = T .

In case of sufficiently smooth solutions the formal adjoint equation is given by

pt + f ′(u(x, t))px = 0, x ∈ R, t ∈ [0,T ), (4)

subject to the following terminal state

p(x,T ) = pT (x), pT (x) := u(x,T )−ud(x), x ∈ R. (5)

The coupled systems (3) and (4), (5) together with

p(x,0) = 0 a.e. x ∈ R (6)

represent the first-order optimality system for smooth solutions of the problem (1)–
(3), in which (3) should be solved forward in time from t = 0 to t = T , while the
adjoint equation (4) should be solved backward in time from t = T to t = 0.

There has been extensive literature on PDE-constrained problems of type (1)–(3)
both analytically and numerically. The semi-group generated by the conservation
law is not differentiable in L1 and therefore the usual notion of derivatives has to be
extended to tangent vectors consisting of an L1-part and real part for the variation in
shock position, see [4]. The studied equations (3)–(6) only capture the L1-variation
leaving the variations in the shock positions aside. A first-order optimality system
that includes shock variations is presented in [5]. The most recent review of existing
literature can be found in [10, 8, 7, 14, 11, 6, 20, 15].

Even though only the L1-part of the optimality system is captured by (3)–(6), it
has been shown in [14] that a suitable numerical implementation allows to solve
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the optimization problem (1)–(3). In this paper, we formalize the observed behav-
ior by proving convergence of a numerical scheme based on solving (3) and (4)–
(6). We only prove convergence outside the regions influenced by shocks. The key
discussion will be on the numerical discretization of the nonconservative transport
equation (4). Theoretical discussion on transport equations can be found, e.g., in
[2, 3, 18]. In order to obtain a well-posed adjoint problem, we follow [20] and as-
sume a one-sided Lipschitz condition (OSLC) to be satisfied. The OSLC condition
for v ∈ L∞(R× (0,T )), where v(x, t) := f ′(u(x, t)), reads

vx(·, t)≤ α(t), α ∈ L1(0,T ). (7)

The adjoint equation is then well-posed for Lipschitz terminal data pT in the sense
that there exists a unique reversible solution of (4), (5). The OSLC condition for
equation (4) holds, for example, if the flux in (3) is strictly convex, that is, if

f ′′ ≥ c > 0 for some c > 0. (8)

In this paper, we consider the scheme, which is second-order in time and first-
order in space and use the results from [20] to establish its convergence. The con-
vergence proof for a second-order in time scheme is the novel contribution of this
work, which provides a theoretical base for the numerical results presented in [14].

2 Numerical Method

In this section, we introduce the iterative optimization algorithm for the problem
(1)–(3) based on the formal optimality system. The algorithm is a simplified version
of Algorithm 3.1 from [14] and may be seen as a block Gauß-Seidel iteration. From
now on the optimal solution u0 of the problem (1)–(3) will be called the recovered
initial data, while the corresponding solution of the system (3) will be referred to as
the recovered solution.

2.1 Iterative Algorithm

Assuming two tolerance parameters, εJ and ε∆J (the second parameter is needed
since the optimal value of the objective functional may be strictly positive), are
chosen a priori, we implement the iterative algorithm to generate a sequence
{u(m)

0 (x)},m = 0,1,2, . . . of recovered initial data as follows.

Algorithm 2.1

Step 1. Choose an initial guess u(0)0 (x) for the initial data u0(x). Set m := 0.
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Step 2. Numerically solve (3) with the initial state u0(x) = u(m)
0 (x) forward in time

from t = 0 to t = T by the semi-discrete version of the Engquist-Osher
scheme described in §2.2. We denote the obtained solution by u(m)(x, t).

Step 3. Compute the objective functional

J(u(m)(·,T );ud(·)) :=
1
2

∞∫
−∞

(
u(m)(x,T )−ud(x)

)2
dx.

Step 4. If either
J(u(m)(·,T );ud(·))≤ εJ ,

or

m > 0 and
∣∣∣J(u(m)(·,T );ud(·))− J(u(m−1)(·,T );ud(·))

∣∣∣≤ ε∆J ,

stop the iteration process. The obtained u(m)
0 (x) will be the approximation

to the optimal control.
Step 5. Numerically solve the adjoint system (4), (5) subject to the terminal condi-

tion p(x,T ) = u(m)
0 (x)−ud(x) backward in time from t = T to t = 0 using a

semi-discrete upwind scheme described below. The solution is denoted by
p(m)(x, t).

Step 6. Update the control u(m)
0 (x) using either a gradient descent or quasi-Newton

method [17].
Step 7. Set m := m+1. Go to Step 2.

2.2 Numerical Schemes

In Step 2 of the Algorithm described in §2.1, the conservation law (3) is being solved
using the semi-discrete version of the Engquist-Osher scheme, which is described in
this section. We consider the IVP (3) and solve it numerically on a uniform spatial
grid with xα := α∆x. We denote by λ := ∆ t/∆x and introduce the computed cell
averages over the cells [x j− 1

2
,x j+ 1

2
]:

u j(t) :=
1

∆x

x
j+ 1

2∫
x

j− 1
2

u(x, t)dx, un
j := u j(tn),

where tn := n∆ t. The cell averages are then evolved in time using the following
semi-discrete scheme:

d u j(t)
dt

=−
F j+ 1

2
(t)−F j− 1

2
(t)

∆x
, (9)



Optimization Problems Governed by Hyperbolic Conservation Laws 5

where F j+ 1
2

denotes the Engquist-Osher numerical flux: F j+ 1
2
(t)=

u j(t)∫
0

f ′(ξ )+ dξ +

u j+1(t)∫
0

f ′(ξ )− dξ . The semi-discretization (9) is a system of ODEs, which should be

integrated using a (nonlinearly) stable and sufficiently accurate ODE solver.
For example, the system (9) can be solved using the second-order strong stability

preserving (SSP) Runge-Kutta method [12, 13] also known as the Heun method
[16]:

un+1
j = un

j −λ

(
H

n+ 1
2

j+ 1
2
−H

n+ 1
2

j− 1
2

)
, (10)

where

H
n+ 1

2
j+ 1

2
:=

1
2

(
Fn

j+ 1
2
+ F̂n+1

j+ 1
2

)
, (11a)

Fn
j+ 1

2
=

un
j∫

0

f ′(ξ )+ dξ +

un
j+1∫

0

f ′(ξ )− dξ , (11b)

F̂n+1
j+ 1

2
=

ûn+1
j∫

0

f ′(ξ )+ dξ +

ûn+1
j+1∫

0

f ′(ξ )− dξ . (11c)

Here, we denote by (·)+ := max{·,0} and (·)− := min{·,0}, and the intermediate
value ûn+1

j is defined by

ûn+1
j := un

j −λ

(
Fn

j+ 1
2
−Fn

j− 1
2

)
, (12)

and is, in fact, a solution obtained after a forward Euler step.

In the following, we describe the semi-discrete upwind scheme used in Step 5 of
Algorithm 2.1 for solving the adjoint equation (4). Since u(x, t) has been computed
in Step 2, the adjoint problem (4) is, in fact, the following linear equation with
variable coefficients:

pt + v(x, t)px = 0, x ∈ R, t ∈ [0,T ), (13)

subject to the terminal conditions (5), where

v(x, t) := f ′(u(x, t)). (14)

According to [20], Algorithm 2.1 will converge provided the numerical method for
the adjoint problem (4), (5) is induced by the numerical method for the conservation
law (3). Introducing the notation pn

j := p(x j, tn), the corresponding discretization of
the adjoint problem can be written as follows:
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pn
j = pn+1

j +λ

2

∑
k=−1

vn
j−k+ 1

2 ,k

(
pn+1

j−k+1− pn+1
j−k

)
, (15)

where

vn
j+ 1

2 ,k
=

∂

∂un
j+k

H
n+ 1

2
j+ 1

2

(
un

j−1, . . . ,u
n
j+2
)
, (16)

and the numerical flux H
n+ 1

2
j+ 1

2
is defined in (11), (12). The coefficients vn

j+ 1
2 ,k

can be

obtained explicitly by substituting (11b), (11c) and (12) into (11a) and then com-
puting the partial derivatives in (16), which result in

vn
j+ 1

2 ,−1
=

λ

2
f ′(ûn+1

j )+ f ′(un
j−1)

+, (17a)

vn
j+ 1

2 ,0
=

1
2

f ′(un
j)
++

1
2

f ′(ûn+1
j )+

(
1−λ | f ′(un

j)|
)
+

λ

2
f ′(ûn+1

j+1)
− f ′(un

j)
+, (17b)

vn
j+ 1

2 ,1
=

1
2

f ′(un
j+1)

−+
1
2

f ′(ûn+1
j+1)

− (1−λ | f ′(un
j+1)|

)
− λ

2
f ′(ûn+1

j )+ f ′(un
j+1)

−,

(17c)

vn
j+ 1

2 ,2
=−λ

2
f ′(ûn+1

j+1)
− f ′(un

j+2)
−. (17d)

Notice that when we solve the adjoint problem, both the second-order, {un
j}, and

first-order, {ûn
j}, solutions of the forward problem are available for all n since they

have been computed in Step 2 of Algorithm 2.1.
Other numerical flux functions F j+ 1

2
are possible. We require that their derivative

obtained by equation (16) yields a discretization of (13). Suitable conditions are
stated in the following section.

Remark 1. The scheme (15), (17) can be derived in an alternative way. Consider the
following semi-discrete upwind scheme for the adjoint equation (13):

d p j(t)
dt

=−
[

f ′(u j(t))+
p j+1(t)− p j(t)

∆x
+ f ′(u j(t))−

p j(t)− p j−1(t)
∆x

]
, (18)

where p j(t) := p(x j, t). Using the vector notations, the ODE system (18) can be
written as

d ppp(t)
dt

= ggg(uuu(t), ppp(t)), (19)

where ppp(t) = {p j(t)}T and ggg(·, ·) = {g j(·, ·)}T is the right-hand side (RHS) of (18).
We now apply the second-order Heun method to the system (19) and obtain the

following fully discretize scheme for (13):

pppn = pppn+1− ∆ t
2

[
ggg(uuun+1, pppn+1)+ggg(uuun, p̃ppn)

]
, (20)
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where pppn := ppp(tn) and the intermediate value p̃ppn is a solution obtained after one
step of forward Euler method (applied backward in time) and defined as

p̃ppn := pppn+1−∆ tggg(uuun+1, pppn+1). (21)

One can see that the adjoint scheme, introduced in (15), (17), can be written (see
Appendix 5) in the form very similar to (20), (21):

pppn = pppn+1− ∆ t
2

[
ggg(ûuun+1, pppn+1)+ggg(uuun, p̂ppn)

]
, (22)

p̂ppn = pppn+1−∆ tggg(ûuun+1, pppn+1). (23)

Therefore, the induced scheme (22), (23) can bee seen as a modification of the
scheme (20), (21). Since ûn+1

j is the first-order approximation of u(x j, tn+1), while
un+1

j is the second-order one, the approximation used in (20), (21) should be a little
more accurate. However, the formal order of accuracy of both schemes is the same
(they are first-order in space and second-order in time) and the convergence proof
presented in the next section is valid for the induced scheme (22), (23) only.

Remark 2. We have tested both the second order-scheme (20), (21) and its modifi-
cation (22), (23) in numerical experiments with a variety of initial guesses u(0)0 (x)
and terminal states ud(x), both smooth and discontinuous ones. Because the differ-
ence in the numerical results obtained by the schemes (20), (21) and (22), (23) is
negligible, for the sake of brevity we omit the results obtained by the scheme (22),
(23).

Remark 3. Note that the first-order version of both the scheme (20), (21) and (22),
(23) is simply given by

pppn = pppn+1−∆ tggg(ûuun+1, pppn+1). (24)

3 Convergence Analysis

In this section, we discuss convergence properties of the numerical method, intro-
duced in §2. We assume that (8) holds and without loss of generality we set

f (0) = 0.

We assume that the scheme (10)–(12) yields entropy solutions of (3). (In fact, the
semi-discrete version of the Engquist-Osher scheme (9) is entropy stable as it has
been proved in [19].) To be more precise, let

u∆ (x, t) := ∑
j

u j(t)χ j(x), (25)
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where χ j(x) is a characteristic function of the interval [x j− 1
2
,x j+ 1

2
], be a numerical

solution computed at time t. We assume that there are positive constants M and ∆0
and an entropy solution u(x, t) such that for all ∆ t = λ∆x≤ ∆0

‖u∆‖∞ ≤M, u∆ (·, t)→ u(·, t) in L1(R) t > 0,∆ t→ 0. (26)

We also assume that for the function α in (7), the discrete OSLC condition,

un
j+1−un

j ≤
1
λ

tn+1∫
tn

α(t)dt, ∀ j ∈ Z, ∀n, (27)

holds. Notice that the condition (27) does not allow for jumps up in the initial data
u0. To allow such jumps, the condition (27) should be relaxed (for a weakened
version of (27), see [20, Condition (D3’)]). It was proved in [20, Section 6.5.1],
that both the conditions (26) and (27) are satisfied for the original Engquist-Osher
scheme, which is (12), (11b) with ûn+1

j replaced with un+1
j on the left-hand side of

(12). Since the second-order Heun method is in fact a convex combination of two
forward Euler steps, the results from [20, Section 6.5.1] are still valid for the scheme
(10), (11). We now proceed with the convergence analysis of the scheme (15), (17).
We first prove the following monotonicity result needed to establish the convergence
proof below.

Lemma 1. Assume that the L∞-bound (26) holds. Let H
n+ 1

2
j+ 1

2
be given by (11), (12)

and assume that the time step is restricted by the following CFL condition:

λ ≤ 1
2 max
|u|≤M

| f ′(u)|
. (28)

Then, the coefficients vn
j+ 1

2 ,k
defined in (16) are nondecreasing functions of un

` for

` ∈ { j−1, j, j+1, j+2}.

Proof. Note that by substituting (11a) into (12) and by differentiating (12) one can
show that provided the condition (28) is satisfied,

∂

∂un
k

ûn+1
j ≥ 0 for k ∈ { j−1, j, j+1}.

Hence, ûn+1
j is nondecreasing with respect to all of its arguments, un

j−1, un
j and un

j+1.
Since f is convex, f ′(·)± are nondecreasing functions. Further, (17a) clearly implies
that vn

j+ 1
2 ,−1

is nondecreasing with respect to f ′(ûn+1
j )+ and f ′(un

j−1)
+. Similarly,

from (17d) we obtain that vn
j+ 1

2 ,2
is non-decreasing with respect to f ′(ûn+1

j+1)
− and

f ′(un
j+2)

−. Given the condition (28), one can show that vn
j+ 1

2 ,0
is nondecreasing with

respect to f ′(un
j)
±, f ′(ûn+1

j )+ and f ′(ûn+1
j+1)

− by differentiating (17b), namely:
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∂vn
j+ 1

2 ,0

∂

(
f ′(un

j)
+
) =

1
4

(
1−2λ f ′(ûn+1

j )+
)
+

1
4

(
1+2λ f ′(ûn+1

j+1)
−
)
≥ 0,

∂vn
j+ 1

2 ,0

∂

(
f ′(un

j)
−
) =

λ

2
f ′(ûn+1

j )+ ≥ 0,

∂vn
j+ 1

2 ,0

∂

(
f ′(ûn+1

j )+
) =

1
2
(
1−λ | f ′(un

j)|
)
≥ 0,

∂vn
j+ 1

2 ,0

∂

(
f ′(ûn+1

j+1)
−
) =

λ

2
f ′(un

j)
+ ≥ 0,

where the identity | f ′(un
j)| = f ′(un

j)
+ − f ′(un

j)
− is taken into account. Similarly,

the differentiation of (17c) shows that vn
j+ 1

2 ,1
is nondecreasing with respect to

f ′(un
j+1)

±, f ′(ûn+1
j )+ and f ′(ûn+1

j+1)
−, provided (28) is satisfied. Finally, using the

chain rule we conclude that vn
j+ 1

2 ,k
are nondecreasing functions of un

` for ` ∈
{ j−1, j, j+1, j+2}. �

Next, we rewrite the discrete adjoint scheme (15) as

pn
j =

2

∑
k=−2

Bn
j,k pn+1

j−k , (29)

were the corresponding coefficients are

Bn
j,−2 = λvn

j+ 3
2 ,−1

, Bn
j,−1 = λ

(
vn

j+ 1
2 ,0
− vn

j+ 3
2 ,−1

)
, (30a)

Bn
j,0 = 1+λ

(
vn

j− 1
2 ,1
− vn

j+ 1
2 ,0

)
, Bn

j,1 = λ

(
vn

j− 3
2 ,2
− vn

j− 1
2 ,1

)
, (30b)

Bn
j,2 =−λvn

j− 3
2 ,2

. (30c)

According to [20], the L∞-stability of the adjoint scheme will follow from the pos-
itivity of Bn

j,k, which will be guaranteed by the following lemma.

Lemma 2. Let H
n+ 1

2
j+ 1

2
be given by (11), (12) and the adjoint scheme given by (29),

(30). Assume that the L∞-bound (26) holds and the time step is restricted by

λ ≤ 1
max
|u|≤M

| f ′(u)|
. (31)

Then, the coefficients Bn
j,k are nonnegative: Bn

j,k ≥ 0 ∀ j ∈Z, k ∈ {−2,−1,0,1,2}.

Proof. First, we obtain that Bn
j,±2 ≥ 0 from their definitions (30a), (30c) and from

the definition of vn
j+ 1

2 ,k
given in (17).

We now note that |ûn+1
j | ≤M, since |un

j | ≤M and the solution of the first-order
Engquist-Osher scheme (12), (11b) satisfies the maximum principle. Then Bn

j,0 can
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be estimated using (17) and (31) as follows:

Bn
j,0 = 1− λ

2

(
| f ′(un

j)|+ | f ′(ûn+1
j )|(1−λ | f ′(un

j)|)

+λ

(
f ′(ûn+1

j−1)
+ f ′(un

j)
−+ f ′(ûn+1

j+1)
− f ′(un

j)
+
))

≥ 1− λ

2

(
| f ′(un

j)|+ | f ′(ûn+1
j )|

)
≥ 0.

Similarly, from (30a), (30b), (17) and (31) we obtain:

Bn
j,−1 =

λ

2

(
f ′(un

j)
+
(

1−λ | f ′(ûn+1
j+1)|

)
+ f ′(ûn+1

j )+
(
1−λ | f ′(un

j)|
))
≥ 0,

Bn
j,1 =

λ

2

(
− f ′(un

j)
−
(

1−λ | f ′(ûn+1
j−1)|

)
− f ′(ûn+1

j )−
(
1−λ | f ′(un

j)|
))
≥ 0,

which completes the proof of the lemma. �

We further obtain bounds on the discrete difference approximation pn
j+1− pn

j ,
computed by the adjoint scheme (15), (17). Using the equivalent form (29), (30) of
the adjoint scheme, we rewrite the difference as follows:

pn
j+1− pn

j =
2

∑
k=−2

(
Bn

j+1,k pn+1
j−k+1−Bn

j,k pn+1
j−k

)
=

2

∑
k=−2

Cn
j,k

(
pn+1

j−k+1− pn+1
j−k

)
,

where the coefficients

Cn
j,k := Bn

j,k +λ

(
vn

j−k+ 1
2 ,k+1

− vn
j−k− 1

2 ,k+1

)
, for −2≤ k ≤ 1, (32a)

Cn
j,2 := Bn

j,2, (32b)

are obtained by simply regrouping the summands. The following lemma shows the
positivity of the coefficients Cn

j,k.

Lemma 3. Assume that the L∞-bound (26) holds and the CFL condition (28) is
satisfied. Then, the coefficients Cn

j,k given by (32) are nonnegative:

Cn
j,k ≥ 0 ∀ j ∈ Z, k ∈ {−2,−1,0,1,2}. (33)

Proof. Lemma 2 implies Cn
j,2 = Bn

j,2 ≥ 0. Then, (32a) together with (30a) and (17a)
give

Cn
j,−2 = Bn

j,−2 +λ

(
vn

j+ 5
2 ,−1
− vn

j+ 3
2 ,−1

)
= λvn

j+ 5
2 ,−1
≥ 0.

The estimate on Cn
j,0 follows from (32a), (17) and the CFL condition (28):
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Cn
j,0 = Bn

j,−2 +λ

(
vn

j+ 1
2 ,1
− vn

j− 1
2 ,1

)
= 1+λ

(
vn

j+ 1
2 ,1
− vn

j+ 1
2 ,0

)
≥ 1+

λ

2

(
f ′(un

j+1)
−− f ′(un

j)
++ f ′(ûn+1

j+1)
−(1−λ | f ′(un

j+1)|)− f ′(ûn+1
j )+(1−λ | f ′(un

j)|)
)

≥ 1+
λ

2

(
f ′(un

j+1)
−− f ′(un

j)
++ f ′(ûn+1

j+1)
−− f ′(ûn+1

j )+
)
≥ 0.

Similarly, from (32), (30), (17) and (28) we obtain

Cn
j,−1 = Bn

j,−1 +λ

(
vn

j+ 3
2 ,0
− vn

j+ 1
2 ,0

)
= λ

(
vn

j+ 3
2 ,0
− vn

j+ 3
2 ,−1

)
=

λ

2

(
f ′(un

j+1)
+
(

1+λ f ′(ûn+1
j+2)

−
)
+ f ′(ûn+1

j+1)
+(1−λ | f ′(un

j+1)|−λ f ′(un
j)
+)
)
≥ 0,

Cn
j,1 = Bn

j,1 +λ

(
vn

j− 1
2 ,2
− vn

j− 3
2 ,2

)
= λ

(
vn

j− 1
2 ,2
− vn

j− 1
2 ,1

)
=

λ

2

(
− f ′(ûn+1

j )−
(
1+λ f ′(un

j+1)
−−λ | f ′(un

j)|
)
− f ′(un

j)
−
(

1−λ f ′(ûn+1
j−1)

+
))
≥ 0,

so that the proof of the lemma is complete. �

Finally, we apply the convergence proof of [20, Theorem 6.4.4] to the introduced
numerical method.

Theorem 1. Assume f ∈ C2(R) satisfies (8). Let the terminal state pT , defined in
(5), be Lipschitz continuous and u∆ satisfies (26) and (27). Assume that the dis-
cretization p∆

T of the terminal state is consistent, that is, there exist constants K > 0
and L > 0 such that

‖p∆
T ‖∞ ≤ K, sup

x∈R

∣∣∣∣ p∆
T (x+∆x)− p∆

T (x)
∆x

∣∣∣∣≤ L

and
p∆

T → pT in [−R,R] ∀R > 0,∆x→ 0.

Assume the condition (28) holds. Then, the numerical solution (15), (17) converges
locally uniformly to the unique reversible solution p∈ Lip(R×(0,T )) of the adjoint
problem (13), (14) as ∆ t = λ∆x→ 0.

Proof. Lemmas 1–3 ensure that all of the assumptions of [20, Theorem 6.4.4] are
satisfied and thus the convergence result follows. �

At the end of this section, we state the convergence result for the discrete gradi-
ents justifying the presented algorithm for a smooth version of the objective func-
tional. For a given nonnegative function φδ ∈ Lip0(R) with the support in [− δ

2 ,
δ

2 ]

and
∫
R φδ (x)dx = 1, and for a given ψ ∈C1

loc(R2), we define the functional Jδ as

Jδ (u0) :=
∞∫
−∞

ψ
(
(φδ ∗u)(x,T ),(φδ ∗ud)(x)

)
dx, (34)
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where, as before, u(x, t) is the entropy solution of the IVP (3), ud(x) is a terminal
state prescribed at time t = T , and ∗ denotes a convolution in x. For Jδ to be well-
posed we assume ud ∈ L∞(R). We discretize Jδ by

J̃δ (u
∆
0 ) = ∑

k
ψ
(
(φδ ∗u∆ )(xk,T ),(φδ ∗u∆

d )(xk)
)
∆x, (35)

where u∆
0 , u∆

d and u∆ denote the corresponding piecewise constant approximations
defined in (25).

The gradient of Jδ exists in the sense of Fréchet differentials, see [20, Theorem
5.3.1]. Using Lemmas 1–3 and Theorem 1 the following convergence result imme-
diately obtained from [20, Theorem 6.4.8].

Theorem 2. Assume that f ∈ C2(R) satisfies (8). Let Jδ be defined by (34), where
φδ ∈ Lip0(R) is a given nonnegative function with the support in [− δ

2 ,
δ

2 ] and∫
R φδ (x)dx = 1, and ψ ∈C1

loc(R2). Assume also that u0 ∈ L∞(R× (0,T )) such that
(u0)x ≤ K. Let

p∆ (x j,T ) = ∑
k

φδ (x j− xk)∂1ψ
(
(φδ ∗u∆ )(xk,T ),(φδ ∗u∆

d )(xk)
)
∆x, (36)

where ∂1ψ denotes a partial derivative of ψ with respect to its first component.
Let u∆ be an approximate solution of (3) obtained by (10)–(12) and thus sat-

isfies (26) and (27). Let p∆ be a piecewise constant approximation of the solution
computed by (15), (17) subject to the terminal data (36), and assume that the CFL
condition (28) holds.

Then, p∆ (·,0) is an approximation to the Fréchet derivative of Jδ with respect to
u0 in the following sense:

p∆ (·,0)→ p(·,0) = ∇Jδ (u0) in Lr(R) as ∆ t = λ∆x→ 0,

for all r ≥ 1. Herein, p is the reversible solution of (13) with the terminal data

pT (x) =
∞∫
−∞

φδ (x− z)∂1ψ
(
(φδ ∗u)(z,T ),(φδ ∗ud)(z)

)
dz.

4 Numerical Results

In this section, we compare the performance of the optimization method described
in Section §2.1 using the first-order schemes (12), (11b) and (24) and the second-
order schemes (10)–(12) and (20), (21).

We refer the reader to [14] for further numerical results (including a much more
complicated case of systems of hyperbolic conservation laws. In particular, in [14]
we consider the examples, in which the control u0 is recovered exactly. Here, on the
contrary, we compare the convergence of first- and second-order (in time) schemes.
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The convergence analysis yields the convergence of the first-order scheme whereas
the numerical results indicate the same qualitative results for its second-order exten-
sion. The rate of convergence is improved in the second-order case.

We consider the problem (1), (2) governed by the inviscid Burgers equation

ut +
(u2

2

)
x
= 0 (37)

with the terminal state

ud(x) =

{
sin(6π(x− 1

3 )), if 1
3 ≤ x≤ 2

3 ,

0, otherwise
(38)

prescribed at T = 1/3. We solve the problem in the interval [0,1] subject to the
periodic boundary conditions using the uniform mesh with ∆x = 1/400 and the
following initial guess:

u(0)0 = sin(2πx). (39)

The recovered initial data, u(20000)
0 (x), and the corresponding recovered solu-

tion u(20000)(x,T ), computed using the studied first- and second-order schemes are
shown in Figures 1 and 2, respectively.

Finally, in Figure 3, we show the behavior of the computed objective functional
(2) for m = 1, . . . ,20000 iterations using a logarithmic scale.

The obtained results clearly demonstrate the advantage of a second-order tempo-
ral discretization even when the same first-order semi-discrete schemes in space are
used.

0 0.2 0.4 0.6 0.8 1

−1

0

1

20000 iterations

u
0

0 0.2 0.4 0.6 0.8 1

−1

0

1

20000 iterations

u

Fig. 1 First-order results. Left: Recovered initial data u(20000)
0 (x); Right: Recovered solution

u(20000)(x,T ) (plotted with points) and the terminal state ud(x) (dashed line).
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0 0.2 0.4 0.6 0.8 1

−1

0

1

20000 iterations
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Fig. 2 Second-order results. Left: Recovered initial data u(20000)
0 (x); Right: Recovered so-

lution u(20000)(x,T ) (plotted with points) and the terminal state ud(x) (dashed line).
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Fig. 3 Dependence of the computed objective functional (measured in a logarithmic scale)
on the number of iterations for the first- (dashed line) and second-order (solid line)
schemes.
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5 Appendix

Here, we demonstrate equivalence of the backward scheme (15), (17) and the mod-
ified second-order Heun method (22), (23). First, we notice that

g j(uuu, ppp) =−
[

f ′(u j)
+ p j+1− p j

∆x
+ f ′(u j)

− p j− p j−1

∆x

]
(40)

is linear in its second argument and hence

ggg(uuun, p̂ppn) = ggg(uuun, pppn+1)−∆ tggg(uuun,ggg(ûuun+1, pppn+1)),
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where p̂ppn is defined in (23). Then the scheme (22), (23) can be written as follows:

pppn = pppn+1− ∆ t
2

[
ggg(ûuun+1, pppn+1)+ggg(uuun, pppn+1)−∆ tggg(uuun,ggg(ûuun+1, pppn+1))

]
. (41)

We then use (40) to rewrite (41) in a componentwise form:

pn
j = pn+1

j +
λ

2

[
f ′(ûn+1

j )+ (pn+1
j+1− pn+1

j )+ f ′(ûn+1
j )− (pn+1

j − pn+1
j−1)

]
+

λ

2

[
f ′(un

j)
+ (pn+1

j+1− pn+1
j )+ f ′(un

j)
− (pn+1

j − pn+1
j−1)

]
+

λ 2

2
f ′(un

j)
+
[

f ′(ûn+1
j+1)

+ (pn+1
j+2− pn+1

j+1)+ f ′(ûn+1
j+1)

− (pn+1
j+1− pn+1

j )
]

− λ 2

2
| f ′(un

j)|
[

f ′(ûn+1
j )+ (pn+1

j+1− pn+1
j )+ f ′(ûn+1

j )− (pn+1
j − pn+1

j−1)
]

− λ 2

2
f ′(un

j)
−
[

f ′(ûn+1
j−1)

+ (pn+1
j − pn+1

j−1)+ f ′(ûn+1
j−1)

− (pn+1
j−1− pn+1

j−2)
]
.

(42)
Rearranging the terms in (42), we finally get the adjoint scheme in the following
form:

pn
j = pn+1

j +λ

[
λ

2
f ′(un

j)
+ f ′(ûn+1

j+1)
+

]
(pn+1

j+2− pn+1
j+1)

+λ

[
1
2

f ′(ûn+1
j )++

1
2

f ′(un
j)
++

λ

2
f ′(un

j)
+ f ′(ûn+1

j+1)
−− λ

2
| f ′(un

j)| f ′(ûn+1
j )+

]
(pn+1

j+1− pn+1
j ),

+λ

[
1
2

f ′(ûn+1
j )−+

1
2

f ′(un
j)
−− λ

2
| f ′(un

j)| f ′(ûn+1
j )−− λ

2
f ′(un

j)
− f ′(ûn+1

j−1)
+

]
(pn+1

j − pn+1
j−1)

−λ

[
λ

2
f ′(un

j)
− f ′(ûn+1

j−1)
−
]
(pn+1

j−1− pn+1
j−2),

(43)
which coincides with (15), (17). Note that the coefficients on the RHS of (43) are
the ones given by (17).
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