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Abstract We consider a two-dimensional pedestrian flow model with obstacles
governed by scalar hyperbolic conservation laws, in which the flux is implicitly
dependent on the density through the Eikonal equation. We propose a simple second-
order finite-volume method, which is applicable to the case of obstacles of arbitrary
shapes. Though the method is only first-order accurate near the obstacles, it is robust
and provides sharp resolution of discontinuities as illustrated in a number of numer-
ical experiments.
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1 Introduction

In this paper, we study a two-dimensional (2-D) pedestrian flow model governed by
the scalar hyperbolic conservation laws

Pt + f(p’ ¢x)x +g(,0’ d)y)y = O’ (1)
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44 Y. Cheng et al.

where p is the pedestrian density and (£, g)7 is the flux given by

r Ve
) = — _— 2
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Here, ¢ is the cost potential function satisfying the Eikonal equation

1
IVoll = —, 3)

u

and u is the isotropic walking speed

U 1= Umax (1 - L) (4)
Pmax

with umax and pmax being the free-flow speed and the jam density, respectively.

This pedestrian flow model was introduced in [8] (see also [7]) as a tool to design
walking facility. Note that the flux (2) is implicitly dependent on the density through
the Eikonal equations (3), (4), which is a special steady-state Hamilton-Jacobi equa-
tion. It was shown in [7] that the pedestrian route choice strategy satisfies the reac-
tive user equilibrium principle in which a pedestrian choose a route to minimize the
instantaneous travel cost to the destination.

According to [7, 16], the model (1)—(4) can be used to study pedestrian flows
in the domain with obstacles. In this case, the obstacles are represented by setting
o = 0and ¢ = @nax inside them with ¢,x being a very large fixed positive number.
The presence of obstacles makes the development of numerical methods for (1)—(4) a
challenging task. In [7], a fifth-order finite-difference WENO scheme was developed
for the simplest case of a square-shaped obstacle with the boundary aligned with a
Cartesian. Obstacles, however, may be of an arbitrary shape and one may prefer to
use an unstructured mesh, which can be adjusted to the shape of the obstacle, but then
the implementation of the numerical method becomes much more complicated. For
example, a circular obstacle was considered in [16], where a discontinuous Galerkin
(DG) method on unstructured triangular mesh for (1)-(4) was introduced.

The main goal of this paper is to develop a simple second-order finite-volume
method on uniform Cartesian grids, which is applicable to the case of obstacles of
arbitrary shape. Here we follow the idea of the interface tracking method, which
was originally developed for compressible multifluids in [3] and then extended to
compressible fluids in domains with moving solid boundaries/obstacles in [4]. To
this end, we cover the computational domain with a Cartesian mesh and categorize
the Cartesian cells into the following three types: interior, mixed and obstacle ones.
The interior cells are the ones that can be fully occupied by pedestrians. The obstacle
cells are the ones that are filled by obstacles and are not accessible by pedestrians.
Finally, the mixed cells are those where the obstacle boundary is located and thus
only part of these cells is accessible. We update the solution in time in the interior
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cells only, while the mixed cell data required for numerical flux function evaluation
are obtained using an interpolation procedure.

In the interior cells, the solution is evolved using the second-order semi-discrete
central-upwind (CU) scheme, which was developed in [9-12] for general multi-
dimensional systems of conservation laws. The CU scheme, however, cannot be
directly applied to Eq. (1), since the flux (2) depends on the derivatives of the cost
potential function ¢. To overcome this difficulty, we take advantage of the fact that
CU schemes are not based on (approximate) Riemann problem solvers and the only
upwinding information required is the estimate of one-sided local speeds of prop-
agation. An additional source of difficulty comes from the fact that the flux (2) is
implicitly dependent on the density p through the Eikonal equations (3), (4), which
should be numerically solved at every time level by an efficient algorithm. We use the
fast sweeping method from [17], which was designed to solve a nonlinear discretized
system directly and efficiently by exploiting the causality of the Eikonal equation. We
apply the fast sweeping method to evolve the cost potential in the interior and mixed
cells, while keeping its values large in obstacle cells. The resulting finite-volume
method is described in Sect. 2.

Compared to alternative numerical methods such as those in [7, 16], our new
method is simpler yet still accurate and efficient and can be applied to general cases
with obstacles of any shape as confirmed by our numerical experiments reported in
Sect.3. A potential drawback of the proposed approach is the lack of conservation
as we do not evolve the pedestrian density in the mixed cells. We expect however the
conservation error to be proportional to the spatial grid size similar to the conservation
error in the interface tracking method reported in [4].

2 Numerical Method

In this section, we describe the numerical method for the pedestrian flow model
(D~(4).

For simplicity, we consider a rectangular computational domain covered by a
uniform spatial mesh consisting of the cells C; x centered at (x, yx) := (jAx, kAy).
The cell is categorized as an interior cell if all of its four vertices, (x L Vel ), are
located outside the obstacles; the cell is categorized as an obstacle cell if all of its
four vertices are located inside the obstacle; otherwise, the cell is categorized as a
mixed cell. We introduce an indicator /;;, which is equal to 1 at the interior cells, 0
at the mixed cells, and —1 at the obstacle cells.

The cell averages of p, denoted by

1
AxAy

//p(x, y.0dydx, Cjp:=[x; 1%, 11X [y 1, yep1]
Cj,k
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are evolved in time in the interior cells (/;x = 1) according to the semi-discrete
scheme:

y y
i 0= HL 0 HL 0= H
Ax Ay

0k = ) S

dt

where H” Iy and H pal Are the numerical fluxes, whose computation depends on

the type ofnelghborlng cells. Namely, if Iijgg=—lorlj1p=0and[; o = —1,
then we set H ;‘ k= = 0 since the pedestrians will not walk directly into the obstacle.
In other cases, we use the second-order CU flux from [10]:

at E _ ,— w + -
o J+%,k Ik aJ+%,kfj+1~k aJ+%,kaJ+%,k w E 6
IR P R — [0} 1k = Pi]- (6)
J+3k J+3.k J+5.k J+5.k
The y-fluxes are obtained in a similar way, that is, if /; z4; = —1 or /; ;41 = 0 and
I; x42 = —1, then we set H ]y ol = 0, while the second-order CU flux from [10],
? 2
+ - S + -
oo b; k+'gjk bj,k+%gj,k+l bijr%bj +i g N
jk+2 T b+ — b b+ —b p,i,k-H - pjvk] ’ (7
Jk+3 Jk+% Jk+% Jk+3

are used in other cases. In (6) and (7), we use the following notation

ffk = f(,o;:fk’ (¢’x)]+%,k)7 f/+l k- f(P]-H k> (¢x)]+ k)

N . N . 3

8jk = g(/oj,ka (¢y)j,k+%)v gj,k+1 = g(Pj,kH’ (¢y)j,k+%)v
where ,o;“% o pxlq o p}\fk and pi «+1 are reconstructed cell interface density values (see
Sect. 2.1 for details), (¢y) ; ik and (¢y) ; x 41 are numerical derivatives of ¢ obtained
from the solution of the Eikonal equations (3), (4) as discussed in Sect.2.2 below,

and a* Tilk and bf joL are estimated one-sided local speeds of propagation defined

in Sect. 2 3. We note tzhat all of the above indexed quantities (except for /; ;) depend
on ¢, but we omit this dependence for the sake of brevity.

Remark 1 The semi-discretization (5) is a system of time-dependent ODEs, which
should be solved by a stable and sufficiently accurate ODE solver. In all of our
numerical experiments, we have used the three-stage third-order strong stability
preserving Runge—Kutta (SSP-RK) method (see, e.g., [5, 6]) with the CFL number
0.25.

Remark 2 Positivity of the evolved values of p; ; is enforced using the draining time
step technique, which was proposed in the context of the one-dimensional shallow
water equations in [1] and then extended to a general 2-D finite-volume evolution
in [2].
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2.1 Evaluation of Point Values of p

The reconstruction of point values of the pedestrian cell density depends on the type
of the cell these quantities are computed in.

Interior cells. We approximate the pedestrian density in these cells using a piece-
wise linear interpolant

P, y) =0 x + (o) jx(x —x;) + (py) k(Y — 1),

which is second-order accurate and non-oscillatory provided the slopes (o) ; x and
(py) jx are computed using a nonlinear limiter. The slopes are evaluated as follows
(we will only discuss the computation of (o) j x since (py) j x are obtained in a similar
way).

If both I+ = 1, then (py);x are computed using the generalized minmod
limiter (see, e.g., [13—15]):

(o) = minmod (9 Pjk—Pj—1k Pjrik = Pj-1k P Pjtik — ﬁj,k)
X/ ],k — ’ ’ k)

Ax 2Ax Ax
where the minmod function is defined as

minj{zj}, if Zj > O, V],
minmod(zy, 22, ...) 1= | max;{z;}, if z; <0, V/,
0, otherwise,

and 6 € [1, 2] is a parameter that can be used to control the amount of numerical
viscosity present in the resulting scheme. In all of our numerical experiments, we
have taken 6 = 1.3.

In the interior cells located near the obstacle, that is if either /j 1, # 1 or
ijl,k # 1, we set (px)j,k =0.

The point values at the centers of cell interfaces required in (6)—(8) are then
obtained using p:

Prk = P01, YOy P1x = PO, 0)s Phy = B(Xjs i)y Py = B(xj, Vo).
Similarly, one can compute the point values at the corners of the cell C; ;:

PTE = 15(XJ+%7 Yitd)s Pi\lkw = IB(Xj—%’ Vi)

Pk = PXyyts Vi1, piY = P 1, Y1),

which will be needed only in some interior cells located near the obstacle; see below.

Mixed cells. In these cells, we first compute the values of p; ;, which are obtained
from the nearby interior cells using the interpolation technique introduced in [3,
Sect.2.3.1] and set the corner values in the mixed cells to be
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We then obtain the point values of p at the centers of cell interfaces by the following
interpolating procedure:

1
E
Pfe =5 (oretaet +oranict)

where
(et g L1
Oyl el = 4 D) jk T T Pjk+1
Iivipr1 +1 gw Tivip+1 \w
+ - ) Pitiast T = 5 Pi+lk)-

Here, the use of factors (/; , 4+ 1)/2 leads to reducing the contribution of the values
from the mixed cells (in which I, ,, = 0) by a factor of 2 since it is reasonable to
assume that in the case of general shape obstacles, only half (in average) of the mixed
cells are occupied by the pedestrians. The point values p}f’k, p}\fk and ,oJS., « are obtained
similarly.

Remark 3 'We note that the order of the CU scheme near the obstacles reduces to
the first one as in the interface tracking method from [3, 4]. However, we still use
second-order CU scheme away from the obstacles since this is necessary to achieve
a sharp resolution of the shock waves.

2.2 Computation of ¢, and ¢,

The values of (¢,) 7, Lk and (¢,) jyas needed in (8) are computed using the centered
differences:

Pivik — Pjk bk — Dx
(¢x)]+%’k = # and (¢>')j,k+% = #’

©))
where ¢« ~ ¢ (x;, yi) are the point values, which are evaluated as follows.

We set ¢ x = ¢max in the obstacle cells, while in the mixed and interior cells, we
obtain ¢; by solving the Eikonal equations (3), (4) using the fast sweeping method
from [17]. Note that the required pedestrian densities are computed from (5) in the
interior cells and from the interpolation described in Sect. 2.1 in the mixed cells.
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2.3 One-Sided Local Speeds of Propagation

In order to estimate the one-sided local speeds of propagation aj: k and bik+l

needed in (6) and (7), respectively, we first substitute (2)—(4) into Eq. (1) and rewrite
it in the following nonconservative form:

V¢
pr+ [(umax - 2M)I/t¢x] px + [(umax - Zu)ud)y] Py = ,OMV (m) s (10)

and then locally freeze V¢. The one-sided local speeds then will be determined by
the coefficients of p, and p, in the convective terms on the left-hand side of (10),
which results in

+
aJ—i—% ko = max {(Mmax - 214] k) j, k(¢x)1+ & (“max - 2Mj+1 k) Uiy, k(¢x)1+ & O} s
{ Umax — k(¢x)1+ & (Mmax - 2uj+1 k) Uiy, k(¢x)1+ & O} s
j k+% = max{ Umax — j,k(¢'}')j,k+%’ (Mmax - 2"‘j,k+1)uj,k+1(¢y)j‘k+%’ 0} s
S S
j k+2 mln{ Umax — j,k(¢y)j,k+%’ (Mmax - 2”j,k+1)uj,k+1(¢y)j’k+%’ 0} s

E _ E w N S o simi
where u ) = tmax(1 — 04/ Pmax) and u 'y w7y and . are obtain similarly.

3 Numerical Examples

We now test the proposed numerical method on a number of numerical examples. In
all of the numerical examples below, the computational domain is [0, 100] x [0, 50].
The upper and lower boundaries are solid walls, the exit is on the right (its size varies
in different examples). In Examples 1, 3 and 4, the initial density is p(x, y,0) = 0
and the pedestrians enter the domain from the left, while in Example 2 the initial
density is not zero and the left boundary is a solid wall. In all of the examples, the
domain contains obstacles (as specified below) and we set up,x = 2 and ppx = 10.

Along the solid wall boundaries with no exits, we add one layer of obstacle cells,
in which we set ¢ = ¢nax. In order to properly handle the exit on the right, we
add two layers of cells on the right side of the computational domain. In the first
additional layer, we place obstacle cells in those cells, whose entire left boundary
coincides with the solid wall part of the original right boundary, interior cells in those
cells, whose entire left boundary coincides with the open exit part of the original right
boundary, and mixed cells otherwise. The second additional layer consists of interior
cells. After the domain is extended, the shifted right boundary is set to be completely
open, at which p is extrapolated from the left and ¢ is set to be zero.
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At the inflow boundary (in Examples 1, 3 and 4), we obtain ¢ using the lin-
ear extrapolation from the right and set the following boundary condition for the
numerical flux:

t/12, 0<t<60,
i, =110—1¢/12, 60 <t <120,
L

0, t > 120.

In Examples 1, 3 and 4, we use a 128 x 64 uniform grid, while in Example 2 we
perform the experimental mesh refinement study. We note that a quite coarse mesh
is used on purpose: our goal is to demonstrate that even though the proposed method
is only first-order accurate near the obstacle, it is very robust and at the same time
sharp at the discontinuities, which is important in practical applications, in which
the use of a very fine mesh may be computationally unaffordable.

In Examples 3 and 4, we also compare the performance of our method with a
naive method, in which all mixed cells are replaced with the obstacle cells, which
is equivalent to extending the obstacle so that its boundary coincides with the cell
boundaries. Our numerical experiments (not reported here for the sake of brevity)
indicate that when the distance between the obstacles is sufficiently large, the latter
approach leads to satisfactory results, which is not the case in Examples 3 and 4.

Example 1 We first consider the example studied in [16]. We take the solid obstacle
to be the disk of radius 10 centered at (50, 20) and the exit is on the right between
y = 10 and y = 40. In Fig. 1, we show a sequence of snapshots of the pedestrian
density at times t = 30, 60, 120 and 180. The obtained results are in quite good
agreement with the results reported in [16], but the shocks at time ¢+ = 120 are

t=30
50
40
30
20
10
0
0 20 40 60 80 100

t=120 t=180

N

50

%‘

il

60 80 100

0

Fig. 1 Example 1: Density computed by the proposed method
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Table 1 Example 2: Conservation errors in the cases of square and circular obstacles

Square obstacle Circular obstacle

Grid Error Rate Grid Error Rate
128 x 64 3.77e-02 - 128 x 64 2.37e-02 -

256 x 128 1.95e-02 0.95 256 x 128 6.31e-03 1.91
512 x 256 1.02e-02 0.94 512 x 256 1.94e-03 1.70
1024 x 512 5.33e-03 0.93 1024 x 512 8.29¢-03 -2.10

slightly sharper resolved by the proposed method and the solution at time t = 180
is not as smeared as the solution in [16, Fig.4].

Example 2 In this example, we study the conservation error of our method. The
initial density is

4, x <25,

0, otherwise,

p(x,y,0) = [
and the exit on the right is the same as in Example 1.

We first take a 20 by 20 square obstacle centered at (50, 20) and compute the
solution until the final time # = 30 by which the pedestrians reach the obstacle and
start getting around it, but no one has left the domain yet. We compute the total
density in the interior cells (where the density is evolved) and measure the relative
conservation error on a sequence of uniform grids. The obtained results are reported
in Table 1, where one can clearly observe that the expected first order of convergence
has been experimentally achieved.

We then take the same circular obstacle, which was used in Example 1 and perform
the same computations as in the case of the square obstacle. The conservation error
behaves somewhat chaotic but remains bounded and within 1%.

Example 3 This is a modification of Example 1: the obstacle is shifted down by 8.5
so that the lower passage gets very narrow, which is a problematic situation for the
naive method, which extends the obstacle and thus almost blocks the lower passage.
We plot, in Fig. 2, the snapshots of the pedestrian densities at times ¢ = 30, 60, 90,
120, 150 and 180, computed by both the proposed and naive methods. As one can
see, the proposed method is capable of easily handling the narrow lower passage, in
which the pedestrians get stuck for much longer time in the naive computation. In
the latter case, we also observe a substantial delay in the pedestrian propagation in
the area above the obstacle (see the results at time ¢+ = 120 and especially r = 150),
which is attributed to the fact that more pedestrians are trying to move that way as
the lower passage is almost blocked.

Example 4 In the final example, we make two substantial modifications to the data
from Example 1. First, we take a larger circular obstacle of radius 15 centered at
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0 20 40 60 80

100 20 40 60 80 100

Fig. 2 Example 3: Density computed by the new (left column) and naive (right column) methods
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0 20 40 60 80 100 0 20 40 60 80 100

Fig. 3 Example 4: Density computed by the new (left column) and naive (right column) methods
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(81.5,25). Second, we take a more narrow exit on the right being now between
y = 15 and y = 35. This makes the pedestrians to get substantially blocked when
the obstacle is extended by the naive method; see Fig.3 (right column), where a
sequence of the density snapshots at times t = 60, 120, 180, 240, 300 and 360 is
plotted. At the same time, the proposed method allows the pedestrians to pass through
the narrow exit area without getting artificially stuck there; see Fig.3 (left column).
As one can see, when the proposed method is used, the pedestrian leave the domain
by time ¢ = 240, while in the naive computations they stay in the domain for much
longer.
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