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SUMMARY

Shallow water models are widely used to describe and study free-surface water flow. While in some prac-
tical applications the bottom friction does not have much influence on the solutions, there are still many
applications, where the bottom friction is important. In particular, the friction terms will play a significant
role when the depth of the water is very small. In this paper, we study shallow water equations with friction
terms and develop a semi-discrete second-order central-upwind scheme that is capable of exactly preserving
physically relevant steady states and maintaining the positivity of the water depth. The presence of the fric-
tion terms increases the level of complexity in numerical simulations as the underlying semi-discrete system
becomes stiff when the water depth is small. We therefore implement an efficient semi-implicit Runge-Kutta
time integration method that sustains the well-balanced and sign preserving properties of the semi-discrete
scheme. We test the designed method on a number of one-dimensional and two-dimensional examples that
demonstrate robustness and high resolution of the proposed numerical approach. The data in the last numer-
ical example correspond to the laboratory experiments reported in [L. Cea, M. Garrido, and J. Puertas,
Journal of Hydrology, 382 (2010), pp. 88–102], designed to mimic the rain water drainage in urban areas
containing houses. Since the rain water depth is typically several orders of magnitude smaller than the height
of the houses, we develop a special technique, which helps to achieve a remarkable agreement between the
numerical and experimental results. Copyright © 2015 John Wiley & Sons, Ltd.

Received 30 December 2013; Revised 29 January 2015; Accepted 15 February 2015

KEY WORDS: shallow water equations with friction terms; central-upwind scheme; well-balanced scheme

1. INTRODUCTION

Shallow water equations are a set of hyperbolic partial differential equations derived by a vertical
integration of Navier-Stokes equations. They are widely used in atmospheric sciences, oceano-
graphy, coastal engineering, and many other fields. In shallow water flow models, the horizontal
length scale is considered to be much larger than the vertical one. As a result, the vertical effect can
be neglected leading to a considerable simplification in the momentum equation, in which the ver-
tical pressure gradients are replaced by the hydrostatic pressure. The simplest, yet commonly used,
shallow water model is the Saint-Venant system [1], which in the two-dimensional (2-D) case reads8̂̂̂<̂

ˆ̂:
ht C .hu/x C .hv/y D R.x; y; t/;

.hu/t C
�
hu2 C

g

2
h2
�
x
C .huv/y D �ghBx ;

.hv/t C .huv/x C
�
hv2 C

g

2
h2
�
y
D �ghBy :

(1.1)
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Here, h.x; y; t/ is the water depth, u.x; y; t/ and v.x; y; t/ are the x-component and y-component
of the average velocity, R.x; y; t/ is the water source term, B.x; y/ is a function describing the
bottom topography, and g is the gravity constant.

Solving the shallow water system numerically is a challenging task because of several reasons.
First, many physically relevant solutions of (1.1) are small perturbations of steady states, charac-
terized by a delicate balance between the flux and source terms. If the method does not accurately
respect this balance, the numerical errors (which cannot be made too small on practically relevant
grids) may lead to oscillations, in which the magnitude of artificial waves may be larger than the
magnitude of the solution itself. The second major difficulty is related to the computation of solu-
tions when the water depth h is very small or even zero. In such a case, small numerical oscillations
may lead to appearance of negative values of h, which in turn would make it impossible to evaluate
the eigenvalues of the system (1.1), which are u˙

p
gh and v ˙

p
gh.

A good numerical method for the system (1.1) should thus be well-balanced (in the sense that it
must exactly preserve physically relevant steady states) and positivity preserving (in the sense that
the computed values of h must be positive). In the past two decades, many well-balanced schemes
have been developed (e.g., [2–17]). Some of them preserve only ‘lake at rest’ steady states, that is,
u � v � 0, hC B � constant, [2–10, 12, 13], other can preserve a nonflat steady-state solution as
well, [11, 15–17]. There are also well-balanced schemes that preserve the positivity of h (e.g., [2–6,
8, 9, 12, 13]).

In this paper, we focus on studying the effects of the bottom friction terms in the shallow water
model, and thus, we consider the following modified version of (1.1):8̂̂̂̂

<̂
ˆ̂̂:
ht C .hu/x C .hv/y D R.x; y; t/;

.hu/t C
�
hu2 C

g

2
h2
�
x
C .huv/y D �ghBx �

�x

�
;

.hv/t C .huv/x C
�
hv2 C

g

2
h2
�
y
D �ghBy �

�y

�
;

(1.2)

where �x and �y are the two components of the bottom friction and � is the water density. The
friction terms are computed by using the following formulae:

�x

�
D ghI x;

�y

�
D ghI y ; (1.3)

where the I x and I y are the components of the bottom friction slope. There are many ways to
model friction terms, e.g. [18, 19]. In this paper, we focus on the classical Manning formulation
(e.g., [20–23]):

I x D
n2

h4=3
u
p
u2 C v2; I y D

n2

h4=3
v
p
u2 C v2; (1.4)

where n is the Manning coefficient. Notice that if h � 0, the friction term (1.4) becomes a stiff
damping term, which increases the level of complexity in the development of efficient numerical
methods for the system (1.2).

The system (1.2) still admits ‘lake at rest’ steady states. However, we are interested in simulating
drainage of the rain water in urban areas. In such situations, the simplest yet physically relevant
quasi one-dimensional (1-D) steady-state solutions correspond to the case when the water flows over
a slanted infinitely long surface with a constant slope as illustrated in Figure 1 (left). Such steady
states (both 1-D and 2-D) are discussed in Section 2.

A well-balanced Roe-type numerical scheme that exactly preserves steady states shown in
Figure 1 was proposed in [24]. However, to maintain the positivity of the water depth h, the scheme
in [24] requires one to use very small time steps and thus may not be robust in certain settings.
Another Godunov-type scheme for the 1-D version of (1.2) was proposed in [25]. Though this
method does not suffer from restrictive time stepping, it is capable of preserving ‘lake at rest’ steady
states only.
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Figure 1. The bottom setting of numerical examples. The figure on the left corresponds to the quasi one-
dimensional steady state. The figure on the right illustrates the case of urban draining with obstacles like

houses. The slope of the bottom and the height of the houses are out of scale.

In this paper, we develop a central-upwind scheme for the system (1.2), which is well-balanced,
positivity preserving, and efficient. Central-upwind schemes have been proposed for general hyper-
bolic system of conversation law in [26–29] and extended to the shallow water equations and related
models in [8, 9, 30]. These schemes belong to the family of Godunov-type central schemes that
are Riemann-problem-solver-free, robust, and highly accurate. The extension of central-upwind
schemes to the shallow water systems with friction terms is very natural and it is described in both
the 1-D (Section 3.1) and 2-D (Section 3.2) cases (the 2-D scheme presented here is restricted to
Cartesian meshes). The efficiency of the proposed central-upwind scheme hinges on the use of an
efficient second-order semi-implicit ODE solver we have recently developed in [31] and briefly
describe in Section 3.3.

The designed scheme is tested in a number of numerical experiments including those with realistic
urban bottom topography structures, schematically shown in Figure 1 (right). The results presented
in Section 4 demonstrate the superb performance of the proposed numerical method. The data in
Example 8 correspond to the laboratory experiments reported in [32], designed to mimic the rain-
water drainage in urban areas containing houses. Since the rainwater depth is typically several
orders of magnitude smaller than the height of the houses, the proposed central-upwind scheme
has been modified to accurately handle such situations as follows. First, the houses are removed
from the computational domain, which becomes a punctured domain with many internal solid wall
boundary pieces. Second, the rainwater falling over the houses is redistributed to the areas near
the edges of the houses. This helps to achieve a remarkable agreement between the numerical and
experimental results.

2. STEADY-STATE SOLUTIONS

In this section, we discuss steady-state solutions of the shallow water system (1.2). We begin with
the simplest 1-D case, in which the system (1.2) reduces to8<:

ht C .hu/x D R.x; t/;

.hu/t C
�
hu2 C

g

2
h2
�
x
D �ghBx � g

n2

h1=3
juju:

(2.1)

In the situation when the water source is zero (R � 0), the steady-state solution satisfies the time-
independent system: 8<:

.hu/x D 0;�
hu2 C

g

2
h2
�
x
D �ghBx � g

n2

h1=3
juju:

(2.2)

In general, this system is not solvable, but one can obtain a particular nontrivial (u ¤ 0) steady state
in the form
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hu � constant; h � constant; Bx � constant: (2.3)

This solution corresponds to the situation when the water flows over a slanted infinitely long surface
with a constant slope. Indeed, if we assume that Bx � �C , where C > 0 is a constant, and denote
hu � q0, then the second equation of (2.2) can be rewritten as�

�
q20
h2
C gh

�
hx D ghC � g

n2

h1=3
juju; (2.4)

and one obtains

h � h0 D

�
n2q20
C

�3=10
; hu � q0; Bx � �C; (2.5)

where h0 is the so-called normal depth. A simple analysis of the ODE (2.4) shows that this steady
state is expected to be stable in the supercritical case, that is, when h0 is below the critical depth hc :

h0 < hc WD
�q0
g

�1=3
: (2.6)

The structure of 2-D steady states is substantially more complicated. However, the quasi 1-D steady-
state solutions

h � constant; hu � constant; hv � 0; Bx � constant; By � 0; (2.7)

or

h � constant; hu � 0; hv � constant; Bx � 0; By � constant (2.8)

are still physically relevant to the situation depicted in Figure 1.
In the next sections, we design both 1-D and 2-D central-upwind schemes that exactly preserve

the aforementioned steady states (2.5) and (2.7), (2.8), respectively.

3. NUMERICAL METHOD

In this section, we present a well-balanced and positivity preserving semi-discrete central-upwind
scheme for the shallow water equations with friction terms in both 1-D and 2-D. The scheme is
derived along the lines of [9], and, therefore, here, we only describe its main components following
the key ideas from [9]. In particular, the well-balanced property of the scheme will be ensured by a
special finite-volume-type quadrature used for discretizing the geometric source term on the right-
hand side of the system. We also introduce a new variable for the water surface w WD hC B . As it
has been shown in [9], working with w (rather than with h) is important for preserving ‘lake at rest’
steady states at the discrete level. Even though in this work, we focus on different types of steady
states, described in Section 2, our goal is to design a numerical method, which preserves both the
‘lake at rest’ and steady states (2.5), (2.7), and (2.8). The positivity preserving property is achieved
by the following: (i) replacing the bottom topography function B with its continuous piecewise
linear (or bilinear in the 2-D case) approximation (done exactly the same way as in [9]); and (ii) a
special positivity preserving correction of the piecewise linear reconstruction for the water surface
w (which is different from the one proposed in [9]).

It should be observed that a successful implementation of the central-upwind scheme would
be impossible without the use of an accurate and efficient time integration method that main-
tains the aforementioned important features of the semi-discrete scheme. In what follows, we first
overview the 1-D and 2-D central-upwind schemes in Sections 3.1 and 3.2, respectively, and
then, in Section 3.3, describe a new semi-implicit Runge-Kutta ODE solver we have recently
developed in [31].
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SHALLOW WATER SYSTEM WITH FRICTION TERMS 359

3.1. One-dimensional central-upwind scheme

We start with a description of a well-balanced positivity preserving central-upwind scheme for the
1-D shallow water equations (2.1). We first rewrite the system (2.1) in an equivalent form in terms
of w WD hC B and q WD hu:8<:

wt C qx D R.x; t/;

qt C

�
q2

w � B
C
g

2
.w � B/2

�
x

D �g.w � B/Bx � g
n2

.w � B/7=3
jqjq:

(3.1)

We use the notations

U WD

�
w

q

�
; F .U ; B/ WD

�
q

q2

w�B
C g

2
.w � B/2

�
and

S .U ; R;B/ WD

�
R.x; t/

�g.w � B/Bx

�
; M .U ; B/ WD

 
0

�g n2

.w�B/7=3
jqjq

!
;

so that the system of balance laws (3.1) takes the following vector form:

U t C F .U ; B/x D S .U ; R; B/CM .U ; B/: (3.2)

For simplicity, we introduce a uniform grid x˛ WD ˛�x, where �x is a small spatial scale and
the corresponding finite volume cells Cj WD Œxj� 12

; xjC 12
�, and assume that at certain time level t ,

the solution is realized in terms of its cell averages, U j .t/ D 1
�x

R
Cj
U .x; t/ dx, which are evolved

in time according to the semi-discrete central-upwind scheme [8, 9, 27]:

d

dt
U j .t/ D �

HjC 12
.t/ �Hj� 12

.t/

�x
C S j .t/CM j .t/ (3.3)

with the central-upwind numerical fluxes,Hj˙ 12
, given by

HjC 12
D
aC
jC 12

F .U�
jC 12

; BjC 12
/ � a�

jC 12
F .UC

jC 12
; BjC 12

/

aC
jC 12
� a�

jC 12

C
aC
jC 12

a�
jC 12

aC
jC 12
� a�

jC 12

�
UC
jC 12
� U�

jC 12

�
:

(3.4)
Note that all of the indexed quantities in (3.4) depend on time, but from now on, we suppress the
time-dependence of indexed quantities in order to shorten the notation.

In (3.4), U˙
jC 12

are the right and left point values of the piecewise linear reconstruction

eUj .x/ D Uj C .Ux/j .x � xj /; 8x 2 Cj ; 8j; (3.5)

at x D xjC 12
:

UC
jC 12
WD UjC1 �

�x

2
.Ux/jC1; U�

jC 12
WD Uj C

�x

2
.Ux/j : (3.6)

To ensure the second-order accuracy and a non-oscillatory nature of the reconstruction, the numer-
ical derivatives .Ux/j are to be computed using a nonlinear limiter, for example, the generalized
minmod limiters:

.Ux/j D minmod

 
�
UjC1 � Uj

�x
;
UjC1 � Uj�1

2�x
; �
Uj � Uj�1

�x

!
;

where the minmod function is defined by
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minmod.´1; ´2; : : :/ WD

8<:min .´1; ´2; : : :/ ; if ´i > 0 8i;
max .´1; ´2; : : :/ ; if ´i < 0 8i;
0; otherwise;

and the parameter � 2 Œ1; 2� controls the amount of numerical dissipation: The larger the � , the
smaller the numerical dissipation.

The use of a limiter does not, however, guarantee the positivity of h˙
jC 12
WD w˙

jC 12
�BjC 12

, where

BjC 12
WD

B
�
xjC 12

C 0
�
C B

�
xjC 12

� 0
�

2
: (3.7)

Hence, to ensure the positivity of h˙
jC 12

, we first replace the bottom topography function B.x/ with

its continuous piecewise linear approximation,

eB.x/ D Bj� 12 C .BjC 12 � Bj� 12 / � x � xj� 12�x
; 8x 2 Cj ; 8j; (3.8)

for which the following property is satisfied:

Bj WD eB.xj / D 1

�x

Z
Cj

eB.x/ dx D BjC 12
C Bj� 12
2

: (3.9)

Remark 3.1
Notice that for the slanted bottom topography (Bx � constant), eB.x/ � B.x/. Also notice that
Equation (3.7) reduces to BjC 12

D B.xjC 12
/ if B is continuous at x D xjC 12

.

Next, the reconstruction for w near (almost) dry areas has to be corrected because the use of (3.6)
may lead to negative values of h˙

jC 12
as it was shown in [9]. We therefore propose the following

correction procedure: In the cells, where the original reconstruction (3.6) produces negative values
of h, we make the slope of h to be equal to the slope of B . Namely, we proceed as follows:

if w�
jC 12

< BjC 12
or wC

j� 12
< Bj� 12

; then take .wx/j D .Bx/j

H) w�
jC 12
D hj C BjC 12

; wC
j� 12
D hj C Bj� 12

;

where hj WD wj � Bj . This correction (unlike the correction procedure in [9] or its more sophisti-
cated modification recently proposed in [3]) not only will guarantee the positivity of h˙

jC 12
but also

will be able to exactly reconstruct the steady-state solution (2.5).
It should also be pointed out that when the solution is expected to have (almost) dry areas, say,

when the computational domain contains ‘islands’ and/or ‘coastal areas’, the values of h could be
very small or even zero. This may not allow us to (accurately) compute the values of the veloc-
ity u, which may become artificially large. In such cases, when in some cells, the point values
h˙
j˙ 12

are smaller than an a priori chosen positive number ", that is, h˙
j˙ 12

< ", the piecewise lin-

ear reconstruction of q in (3.5) should be replaced with a piecewise linear reconstruction of u in
the entire computational domain. Namely, the velocity at the cell centers is first computed by the
desingularization formula

uj D
2 hj � qj

h
2

j Cmax
�
h
2

j ; "
2
� ; (3.10)

and then the point values of the velocity at the cell interfaces x D xjC 12
are obtained from

uC
jC 12
WD ujC1 �

�x

2
.ux/jC1; u�

jC 12
WD uj C

�x

2
.ux/j ;
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where the numerical derivative .ux/j are evaluated using the same nonlinear limiter as in (3.5). For
consistency, the values of the discharge at cell interfaces are recomputed using q˙

j˙ 12
D h˙

j˙ 12
�u˙
j˙ 12

.

Remark 3.2
We note that one may use other strategies to compute the desingularized velocity:

u D

p
2hqp

h4 Cmax .h4; "4/
;

or

u D

´ q
h
; if h > ";

0; otherwise;

see, for example, the discussion in [9]. Our numerical experiments demonstrate that the proposed
method is not sensitive to the selection of the desingularization procedure used.

Next, equipped with the values of h˙
jC 12

and u˙
jC 12

, we complete the construction of the central-

upwind flux (3.4) by estimating the one-sided local speeds of propagation as follows:

aC
jC 12
D max

²
uC
jC 12
C

r
ghC

jC 12
; u�

jC 12
C
q
gh�

jC 12
; 0

³
;

a�
jC 12
D min

²
uC
jC 12
�

r
ghC

jC 12
; u�

jC 12
�
q
gh�

jC 12
; 0

³
:

(3.11)

The final step in the derivation of the semi-discrete scheme is the discretization of the source
terms:

S j .t/ �
1

�x

Z
Cj

S.U; R;B/ dx; M j .t/ �
1

�x

Z
Cj

M .U; B/ dx:

We calculate the first component of S j using the midpoint rule:

S
.1/

j D R.xj ; t /;

while approximate the geometric source in S
.2/

j using a special quadrature derived in [8, 9], which
guarantees the well-balancedness of the resulting scheme:

S
.2/

j D �ghj
BjC 12

� Bj� 12
�x

: (3.12)

The second component ofM j is computed using the desingularization procedure (3.10):

M
.2/

j D �g n
2

0@ 2 hj

h
2

j Cmax
�
h
2

j ; "
2
�
1A7=3 jqj jqj : (3.13)

We remark that the semi-discrete scheme (3.3), (3.4) is a system of time-dependent ODEs, which
should be solved using a high-order (at least second order accurate) and efficient method as we
discuss in Section 3.3 in the succeeding texts.
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3.2. Two-dimensional central-upwind scheme

In this section, we describe the central-upwind scheme for the 2-D shallow water system (1.2). As
in the 1-D case, we rewrite the system (1.2) in terms of the new unknown vector U D .w; q WD
hu; p WD hv/T :

U t C F .U ; B/x CG .U ; B/y D S .U ; R;B/CM .U ; B/; (3.14)

where the fluxes and the source terms are:

F .U ; B/ D

�
q;

q2

w � B
C
g

2
.w � B/2;

qp

w � B

�T
;

G .U ; B/ D

�
p;

qp

w � B
;
p2

w � B
C
g

2
.w � B/2

�T
;

S .U ; R; B/ D
�
R;�g.w � B/Bx ;�g.w � B/By

	
;

M .U ; B/ D

�
0;�g

n2

h7=3
q
p
q2 C p2;�g

n2

h7=3
p
p
q2 C p2

�T
:

We denote by Cj;k the computational cells Cj;k D Œxj� 12
; xjC 12

� � Œyk� 12
; ykC 12

�, where x˛ WD
˛�x and yˇ WD ˇ�y, where �x and �y are small spatial scales, and write a central-upwind
semi-discretization of (3.14) as the system of ODEs:

d

dt
U j;k D �

H x

jC 12 ;k
�H x

j� 12 ;k

�x
�
H
y

j;kC 12
�H

y

j;k� 12

�y
C S j;k CM j;k; (3.15)

for the time evolution of the cell averages, U j;k.t/ D
1

�x�y

’
Cj;k

U .x; y; t/ dxdy. As in the 1-D

case, we follow [9, 29] and obtain the central-upwind numerical fluxes in the form

H x

jC 12 ;k
D
aC
jC 12 ;k

F
�
UEj;k; BjC 12 ;k

�
� a�

jC 12 ;k
F
�
UWjC1;k; BjC 12 ;k

�
aC
jC 12 ;k

� a�
jC 12 ;k

C
aC
jC 12 ;k

a�
jC 12 ;k

aC
jC 12 ;k

� a�
jC 12 ;k

h
UWjC1;k � U

E
j;k

i
;

H
y

j;kC 12
D
bC
j;kC 12

G
�
UNj;k; Bj;kC 12

�
� b�

j;kC 12
G
�
U Sj;kC1; Bj;kC 12

�
bC
j;kC 12

� b�
j;kC 12

C
bC
j;kC 12

b�
j;kC 12

bC
j;kC 12

� b�
j;kC 12

h
U Sj;kC1 � U

N
j;k

i
:

(3.16)

Here, Bj˙ 12 ;k
and Bj;k˙ 12

are the values of the piecewise bilinear approximation of B:

eB.x; y/ D Bj� 12 ;k� 12 C �BjC 12 ;k� 12 � Bj� 12 ;k� 12 � � x � xj� 12�x

C
�
Bj� 12 ;kC

1
2
� Bj� 12 ;k�

1
2

�
�
y � yk� 12
�y

C
�
BjC 12 ;kC

1
2
� BjC 12 ;k�

1
2

�Bj� 12 ;kC
1
2
C Bj� 12 ;k�

1
2

� �x � xj� 12 � �y � yk� 12 �
�x�y

; .x; y/ 2 Cj;k;

(3.17)
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with BjC 12 ;kC 12
D B

�
xjC 12

; ykC 12

�
if the function B is continuous at

�
xjC 12

; ykC 12

�
; see [9] for

the case of discontinuous B .
Similarly to the 1-D case, the piecewise bilinear approximant eB satisfies the following property:

Bj;k WD eB.xj ; yk/ D 1

�x�y

“
Cj;k

eB.x; y/ dx dy D 1

4

�
BjC 12 ;k

C Bj� 12 ;k
C Bj;kC 12

C Bj;k� 12

�
;

(3.18)
where BjC 12 ;k

WD eB �xjC 12 ; yk� and Bj;kC 12
WD eB �xj ; ykC 12 �.

Remark 3.3
For the slanted bottom topography satisfying either Bx � constant; By � 0 or Bx � 0; By �
constant, the approximant (3.17) is exact, that is, eB.x; y/ � B.x; y/.

The values UE;W;N;S
j;k

in (3.16) are the point values of the piecewise linear reconstruction

eU .x; y/ D U j;k C .U x/j;k.x � xj /C .U y/j;k.y � yk/; .x; y/ 2 Cj;k; (3.19)

at .xjC 12
; yk/, .xj� 12

; yk/, .xj ; ykC 12
/, .xj ; yk� 12

/, respectively. Namely, we have

UEj;k WD
eU �xjC 12 � 0; yk� D U j;k C �x

2
.U x/j;k ;

UWj;k WD
eU �xj� 12 C 0; yk� D U j;k � �x2 .U x/j;k ;

UNj;k WD
eU �xj ; ykC 12 � 0� D U j;k C �y

2

�
U y

	
j;k
;

U Sj;k WD
eU �xj ; yk� 12 C 0� D U j;k � �y2 �

U y
	
j;k
:

As in the 1-D case, the numerical derivatives .U x/j;k and .U y/j;k are to be computed using a
nonlinear limiter, say, the generalized minmod limiter (for details, see [9]).

To preserve the positivity of water height h, we follow the 1-D approach presented in Section 3.1
and correct the reconstructed values of w as follows:

if wEj;k < BjC 12 ;k
or wWj;k < Bj� 12 ;k

; then take .wx/j;k D .Bx/j;k

H) wEj;k D BjC 12 ;k
C hj;k; wWj;k D Bj� 12 ;k

C hj;kI

if wNj;k < Bj;kC 12
or wSj;k < Bj;k� 12

; then take .wy/j;k D .By/j;k

H) wNj;k D Bj;kC 12
C hj;k; wSj;k D Bj;k� 12

C hj;k;

where hj;k WD wj;k � Bj;k .
Once again, we observe that the obtained point values of h may be very small or even zero.

Similarly, to the 1-D case, when the solution contains (almost) dry areas, that is, if hjC 12 ;k
< " or

hj;kC 12
< " somewhere in the computational domain, we reconstruct the velocities u and v instead

of the discharges q and p. To this end, we first compute the velocities at the cell centers:

uj;k D
2 hj;k qj;k

h
2

j;k Cmax
�
h
2

j;k; "
2
� ; vj;k D

2 hj;k pj;k

h
2

j;k Cmax
�
h
2

j;k; "
2
� ; (3.20)
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and evaluate the point values at the cell interfaces using the piecewise linear reconstructions:

uE
j;k WD uj;k C

�x

2
.ux/j;k; uW

j;k WD uj;k �
�x

2
.ux/j;k;

uN
j;k WD uj;k C

�y

2
.uy/j;k; uS

j;k WD uj;k �
�y

2
.uy/j;k

vE
j;k WD vj;k C

�x

2
.vx/j;k; vW

j;k W vj;k �
�x

2
.vx/j;k;

vN
j;k WD vj;k C

�y

2
.vy/j;k; vS

j;k WD vj;k �
�y

2
.vy/j;k;

where the numerical derivatives .ux/j;k ; .vx/j;k ; .uy/j;k , and .vy/j;k are computed with the help
of the same nonlinear limiter used in (3.19). The obtained values are then used to recompute the
corresponding point values of q and p:

q
E(W,N,S)
j;k

D h
E(W,N,S)
j;k

� u
E(W,N,S)
j;k

; p
E(W,N,S)
j;k

D h
E(W,N,S)
j;k

� v
E(W,N,S)
j;k

:

The local one-sided speeds of propagation a˙
jC 12 ;k

and b˙
j;kC 12

in (3.16) can be estimated as

follows:

aC
jC 12 ;k

D max¹uEj;k C
q
ghE

j;k
; uWjC1;k C

q
ghW

jC1;k
; 0º;

a�
jC 12 ;k

D min¹uEj;k �
q
ghE

j;k
; uWjC1;k �

q
ghW

jC1;k
; 0º;

bC
j;kC 12

D max¹vNj;k C
q
ghN

j:k
; vSj;kC1 C

q
ghS

j;kC1
; 0º;

b�
j;kC 12

D min¹vNj;k �
q
ghN

j:k
; vSj;kC1 �

q
ghS

j;kC1
; 0º:

(3.21)

Finally, a well-balanced discretization of the source term is obtained using the same desingular-
ization process as in (3.20) and is thus given by

S
.1/

j;k
D R.xj ; yk; t /; M

.1/

j;k
D 0;

S
.2/

j;k
D �ghj;k

BjC 12 ;k
� Bj� 12 ;k

�x
; M

.2/

j;k
D �gn2

q
q2j;k C p

2
j;k

0@ 2 hj;k

h
2

j;k Cmax
�
h
2

j;k; "
2
	
1A7=3qj;k;

S
.3/

j;k
D �ghj;k

Bj;kC 12
� Bj;k� 12
�y

; M
.3/

j;k
D �gn2

q
q2j;k C p

2
j;k

0@ 2 hj;k

h
2

j;k Cmax
�
h
2

j;k; "
2
�
1A7=3pj;k :

As in the 1-D case, in order to obtain a fully discrete scheme, the system (3.15), (3.16) should be
integrated by a stable and efficient ODE solver of at least second order of accuracy. We discuss the
details of time integration in the next section.

3.3. Time integration method

As it was outlined in the previous sections, both the 1-D and 2-D semi-discrete central-upwind
schemes are the systems of time-dependent ODEs that should be solved by an accurate, stable,
and efficient method. A family of explicit strong stability preserving Runge-Kutta methods (SSP-
RK) has been widely used in numerical simulations of various shallow water systems, see, for
example, [33, 34]. The presence of the stiff friction term in both (3.3) and (3.15) can lead, however,
to a great loss in accuracy and efficiency of the ODE solver. In shallow water applications that
included dry and/or almost dry areas, the explicit treatment of the friction terms imposes a severe
time step restriction, which is several order of magnitude smaller than a typical time step used for
the corresponding friction-free version of the studied system.
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An attractive alternative to explicit methods is implicit-explicit SSP Runge-Kutta solvers, which
treat the stiff part of the underlying ODE system implicitly and thus typically have the stability
domains based on the nonstiff term only, see, for example, [35–40]. However, a straightforward
implementation of these methods may break the discrete balance between the fluxes, geometric
source, and the friction terms maintained by the derived semi-discrete central-upwind scheme, and
the resulting fully discrete method will not be able to preserve the relevant steady states and the
positivity of the computed water depth.

To overcome this difficulty, we have recently developed a family of second-order semi-implicit
time integration methods for systems of ODEs with stiff damping term [31]. In these methods, only
a portion of the stiff term is implicitly treated, and therefore, the evolution equation is very easy to
solve and implement compared to fully implicit or implicit-explicit methods. The important feature
of the ODE solvers we introduced in [31] resides in the fact that they are capable of exactly preserv-
ing the steady states as well as maintaining the sign of the computed solution under the time step
restriction determined by the nonstiff part of the system only. The new semi-implicit methods are
based on the modification of explicit SSP-RK methods and are proven to have a formal second order
of accuracy, A.˛/-stability and stiff decay. We now briefly describe the application of the second-
order semi-implicit ODE solver from [31] to the ODE system (3.3), (3.4) (the implementation of
the ODE solver to the system (3.15), (3.16) is similar, and we thus omit it for the sake of brevity).

We first introduce the grid function of the numerical solution U WD
°
U j

±
. We then denote the

discretization of the sum of fluxes, geometric, and water source terms by

F
h
U
i
j
WD �

H jC 12
�H j� 12

�x
C S j ; (3.22)

and introduce the discrete friction coefficient

G.U j / WD �gn2
0@ 2 hj

h
2

j Cmax
�
h
2

j ; "
2
�
1A7=3 jqj j; (3.23)

so that the discretization of the friction term (3.13) can be written asM
.2/

j D G.U j / qj . Using these
notations, the ODE system (3.3) can be rewritten as8̂̂<̂

:̂
d

dt
wj D F .1/ŒU �j ;

d

dt
qj D F .2/ŒU �j C G.U j / qj :

(3.24)

We now implement the SI-RK3 method to the system (3.24) (the SI-RK3 method is a second-
order semi-implicit Runge-Kutta method based on the third-order SSP-RK method; for details, see
[31, Section 3]). The resulting fully discrete scheme can be written as

wIj D wj .t/C�tF .1/ŒU .t/�j ;

qIj D
qj .t/C�tF .2/ŒU .t/�j

1 ��t G.U .t/j /
;

(3.25a)

wIIj D
3

4
wj .t/C

1

4

�
wIj C�tF .1/ŒU

I
�j

�
;

qIIj D
3

4
qj .t/C

1

4
�
qIj C�tF .2/ŒU

I
�j

1 ��t G.U Ij /
;

(3.25b)
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wIIIj D
1

3
wj .t/C

2

3

�
wIIj C�tF .1/ŒU

II
�j

�
;

qIIIj D
1

3
qj .t/C

2

3
�
qIIj C�tF .2/ŒU

II
�j

1 ��t G.U IIj /
;

(3.25c)

wj .t C�t/ D w
III
j ;

qj .t C�t/ D
qIIIj � .�t/2F .2/ŒU III �j G.U

III

j /

1C .�t G.U IIIj //2
;

(3.25d)

where U
I
D .wI ; qI /T , U

II
D .wII ; qII /T , and U

III
D .wIII ; qIII /T .

In the following theorem, we prove that the fully discrete scheme (3.25) is well-balanced.

Theorem 3.1
The fully discrete central-upwind scheme (3.25) is well-balanced in the sense that it preserves
steady-state solutions satisfying

h � h0 D

�
n2q20
C

�3=10
; q � q0; Bx � �C; R � 0 (3.26)

as long as h0 > ", where " is a desingularization parameter used in (3.10).

Proof
We first note that for the steady states (3.26), the numerical derivatives of U are given by U x �
.�C; 0/T , and the numerical flux reduces to

H jC 12
D
�
q0;

q20
h0
C
g

2
h20

�T
:

Therefore, H jC 12
�H j� 12

� 0. The sums of the components of the source terms are also equal to
zero, that is,

S
.1/

j CM
.1/

j D 0C 0 D 0; S
.2/

j CM
.2/

j D gh0C � g
n2

h
7=3
0

jq0jq0 D 0: (3.27)

The second equation can be proven true when h0 > " according to the definition of h0. Then, using
the notations (3.22) and (3.23), we obtain that (3.27) is equivalent to

F .1/ŒU �j D 0; F .2/ŒU �j C G.U j / qj D 0;

which after being substituted into (3.25) implies h
nC1

j D h
n

j D h0 and qnC1j D qnj D q0. We
therefore have proved that the steady state (3.26) is preserved. �

Remark 3.4
Notice that the 2-D version of Theorem 3.1 can be proved in a similar manner.

Remark 3.5
In [31], we have proved that the time step restriction for the SI-RK3 method is determined by the
nonstiff (explicitly treated) term only and no extra time restrictions due to the stiffness of the friction
term is required. This implies that for the ODE system (3.24), arising from the central-upwind semi-
discretization of the 1-D shallow water system, the size of the time step is to be calculated based on
the CFL condition, namely, we need to select
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�t 6 .�t/� WD
�x

2a
; a D max

j

²
aC
jC 12

;�a�
jC 12

³
; (3.28)

where a˙
jC 12

are the local propagation speeds defined in (3.11).

Remark 3.6
We would like to emphasize that [9, Theorem 2.1] directly applies to the first stage of the SI-RK3

method (3.25), and hence, the time step restriction (3.28) guarantees the positivity of h
I

j WD w
I
j �Bj

for all j provided hj .t/ > 0 for all j . The positivity of h
II

j , h
III

j , and hj .t C �t/ will then be
ensured by the same theorem provided�t 6 .�t/I� and�t 6 .�t/II� , where .�t/I� and .�t/II� are

computed using (3.28) applied to the intermediate solutions U
I

and U
II

, respectively. To satisfy
all of the aforementioned time step restrictions, we implement the following adaptive strategy:

(i) Given the solution U .t/, set �t WD �.�t/�, where � 2 .0; 1/ and .�t/� is given by (3.28);

(ii) Use �t to compute U
I

by (3.25a);

(iii) Given the intermediate solution U
I

, compute .�t/I� by (3.28);
(iv) If .�t/I� < �t , set �t WD �.�t/I� and go back to Step (ii);

(v) Use �t to compute U
II

by (3.25b);

(vi) Given the intermediate solution U
II

, compute .�t/II� by (3.28);
(vii) If .�t/II� < �t , set �t WD �.�t/II� and go back to Step (ii);

(viii) Use �t to compute U
III

and U .t C�t/ by (3.25c) and (3.25d), respectively.

In all of the numerical examples in the succeeding texts, we have used � D 0:9.
In the 2-D case, we have implemented a similar adaptive strategy to ensure the positivity of h.

However, the basic CFL condition is more restrictive (see [9, Theorem 3.1]), and one has to choose

�t 6 .�t/� WD min

²
�x

4a
;
�y

4b

³
; a D max

j;k

²
aC
jC 12 ;k

;�a�
jC 12 ;k

³
; b D max

j;k

²
bC
j;kC 12

;�b�
j;kC 12

³
;

where a˙
jC 12 ;k

and b˙
j;kC 12

are the local propagation speeds defined in (3.21).

4. NUMERICAL EXAMPLES

In this section, we test the designed well-balanced positivity preserving central-upwind scheme
on several 1-D and 2-D problems including the ones with the data originating from the recently
performed laboratory experiments reported in [32]. In all of the examples in the succeeding texts,
the gravitation constant g D 9:8 (in Example 4, we use g D 9:81), the minmod parameter � D 1:3,
and we select the desingularization parameter " D 10�8 (in Example 4, we use " D 10�4, 10�8,
and 10�12).

4.1. One-dimensional examples

Example 1 – Steady flow over a slanted surface. We begin by illustrating the well-balanced property
of the designed scheme, that is, we test the ability of the scheme to exactly preserve the steady-state
solution (2.5), which is schematically shown in Figure 1 (left). To this end, we consider the system
(2.1) on the interval Œ0; 2:5� with R � 0 and subject to the constant initial data given by (2.5). We
introduce a uniform grid with �x D 0:025 and set zero-order extrapolation boundary conditions
at both ends of the domain, that is, h0 D h1; hNC1 D hN . We run five sets of experiments with
different values of h0, q0, Bx , and n, shown in Table I, in which the first four are taken from [32].
The solution is evolved until time t D 100. The right column of Table I clearly illustrates that our
scheme preserves the studied steady-state solutions within machine accuracy.
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Example 2 – Small perturbation of steady flow over a slanted surface. In this example, we take
the same initial data from Example 1 but introduce a small perturbation to the initial water surface,
namely,

h.x; 0/ D h0 C

²
0:2h0; 1 6 x 6 1:25;
0; otherwise;

q.x; 0/ � q0: (4.1)

We first consider a supercritical case (Test 2 in Table I) and present several time snapshots of the
computed solution in Figure 2. As one can see, the perturbation first changes its shape and propa-
gates to the right, eventually leaving the domain. At large times, the computed solution converges
to the steady state ( Figure 2 (right)).

We then proceed with a subcritical case (Test 4 in Table I) and again replace the initial data in
Example 1 with (4.1). The evolution of the perturbed solution is shown in Figure 3. In this case, the
shape of the propagating perturbation is different from the one in the supercritical case, but at large
times, the computed solution still converges to the steady state.

Finally, we consider Test 5 from Table I, in which the magnitude of the slope Bx is much larger
than in the other tests. In this case, the perturbation propagates much faster than in the previous two
tests (Figure 4), but the scheme still performs very well and the numerical steady state is achieved
at large times.

Example 3 – Rainfall-runoff over a slanted surface. In this example, which is a 1-D modification
of Example T3 from [24], we test the stability and accuracy of the proposed numerical scheme in

Table I. Example 1: Errors in computing the steady-state solution (2.5) for
different sets of data.

Test h0 q0 n Bx Froude number kh � h0k1

1 0.57708 2 0.02 �0.01 1.46 3:3307 � 10�16

2 0.09564 0.1 0.02 �0.01 1.08 5:8287 � 10�16

3 0.25119 0.1 0.1 �0.01 0.25 1:0547 � 10�15

4 0.02402 0.002 0.1 �0.01 0.17 1:8978 � 10�15

5 0.44894 2 0.1 �1=
p
3 2.12 4:9960 � 10�16
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Figure 2. Example 2: Evolution of the solution in the supercritical case (Test 2 in Table I).
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Figure 3. Example 2: Evolution of the solution in the subcritical case (Test 4 in Table I).
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Figure 4. Example 2: Evolution of the solution with large bottom slope (Test 5 in Table I).

Table II. Example 3: Friction coefficients and slopes.

Test 1 2 3 4 5 6

n 0.02 0.05 0.02 0.05 0.02 0.05
Bx �0.05 �0.05 �0.01 �0.01 �0.2 �0.2

the scenario with very shallow water, bed friction, and large bottom slope. The surface is assumed
to be dry at time t D 0, that is, we set

h.x; 0/ � 0; q.x; 0/ � 0; (4.2)

and the bottom is set to be a slanted surface. The rain of a constant intensity starts falling at time
t D 0 and stops at time t D 100. This is modeled by taking

R.x; t/ D

´
10�4; 0 6 t 6 100;
0; otherwise:

The water drains through the right boundary, at which we set

hNC1 WD 0; qNC1 WD 0;

where N is a total number of cells inside the computational domain Œ0; 2:5� (we take N D 100 in
this example). On the left side of the domain, we use solid wall boundary conditions.

We consider six sets of data with different values of friction coefficient n and slope Bx (Table II)
and run the simulations until time t D 150.

In Figure 5, we plot the first component of the numerical flux at the right edge of the compu-
tational domain (H .1/

NC1=2
) as a function of time. Notice that this is an approximation of the outlet

discharge, which is a measurable quantity in experimental settings. In all six cases, the results
obtained by the designed central-upwind scheme are in a good agreement with the results reported
in [24]. We would like to point out that in [24], the simulations were performed in the 2-D domain
of the width 0.2, so that all of the discharge values in Figure 5 are to be multiplied by the factor of
0.2 in order to be compared with those in [24]. As one can clearly see from Figure 5, the reported
results are oscillation-free confirming the robustness of the designed central-upwind scheme.

Remark 4.1
It should be observed that if an upwind numerical scheme is used instead of the central-upwind one,
the ghost cell values (4.2) may be unacceptable. We refer the reader to [24], where supercritical
boundary conditions have been implemented using a different ghost cell values:

hNC1 WD

 
q2N
g

!1=3
; qNC1 WD qN :

In all of our computations, both types of boundary conditions produce similar results. However, the
supercritical boundary conditions sometime cause small oscillations.
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Figure 5. Example 3: Outlet discharge as a function of time. While comparing with the results in [24], the
discharge values are to be multiplied by 0.2, which is the width of the 2-D computational domain in [24].

Example 4 – Convergence to a non-trivial equilibrium. In this example taken from [25], we simu-
late a subcritical flow over a nonflat bottom. As described in [25], the system (2.1) withR.x; t/ � 0,
n D 0:03; and g D 9:81 admits the non-trivial steady-state solution with

hst.x/ D 0:8C
1

4
exp

"
�
135

4

�
x � 75

150

�2#
; qst.x/ � 2;

and the bottom topography function B satisfying

B 0.x/ D

�
4

9:81 h3st.x/
� 1

�
h0st.x/ �

0:0036

h
10=3
st .x/

:

We prescribe zero initial condition (h.x; 0/ � q.x; 0/ � 0) throughout the computational domain
Œ0; 150� and implement the following boundary conditions by setting the ghost cell values to be

h0 WD 2h1 � h2; q0 WD 2; hNC1 WD hst.xNC1/; qNC1 WD qN :

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 78:355–383
DOI: 10.1002/fld



SHALLOW WATER SYSTEM WITH FRICTION TERMS 371

In addition, we fix the first component of inlet numerical flux by setting

H
.1/
1
2

WD 2

for all times.
The solution of the studied initial-boundary value problem is expected to converge to the afore-

mentioned steady state as t !1. We test our scheme on different grids varying the number of cells
N from 50 to 1600 and study the convergence rate by comparing the computed solutions with the
steady-state one at time Tmax D 1200. The solution (w and q) computed with N D 50 is plotted in
Figure 6 together with the steady-state solution. As one can see, the proposed method captures the
exact steady state quite accurately even on such a coarse grid (the obtained results are a little bet-
ter than the one reported in [25]). When the mesh is refined, the second-order convergence rate is
observed in h, while the q component converges with almost third order (Table III), where we show
both the L1-norm and L1-norm of the errors together with the experimental convergence rates.

Example 5 – Oscillating lake. We consider shallow water flow with wet/dry fronts in a frictional
parabolic bottom. This example is a modification of the numerical example studied in [41, 42]: We
use the same initial data and bottom topography function, but we replace the linear friction term
used in [41, 42] with the Manning friction term. The main goal of this example is to study the impact
of the small parameter " in the desingularization procedure (3.10) on the computed solution.

We consider the bottom topography described by the function

B.x/ D 10

�� x

3000

�2
� 1

�
;

and set the following initial conditions:

w.x; 0/ D max¹k1x C k2; B.x/º; q.x; 0/ � 0;

where k1 D 0:0023660539018216433 and k2 D �1:25959748992322. We use the Manning friction
term with the coefficient n D 0:02.

0 50 100 150
0

0.5

1

1.5

2
N=50
Steady state
B

0 50 100 150
1.99

1.995

2

2.005

2.01
N=50
Steady state

Figure 6. Example 4: Solution (w.x; 1200/ and q.x; 1200/) computed using N D 50 and the exact steady-
state solution.

Table III. Example 4: The L1-error and L1-error and convergence rates for h and q.

h q

N L1-norm Rate L1-norm Rate L1-norm Rate L1-norm Rate

100 5.42E-03 �� 1.53E-04 �� 7.22E-04 �� 1.66E-05 ��
200 1.34E-03 2.017 3.78E-05 2.017 9.06E-05 2.993 2.10E-06 2.983
400 3.33E-04 2.010 9.39E-06 2.009 1.13E-05 2.998 2.62E-07 3.003
800 8.28E-05 2.005 2.34E-06 2.005 1.42E-06 2.999 3.28E-08 2.998
1600 2.07E-05 2.002 5.84E-06 2.002 1.79E-07 2.988 4.57E-09 2.843
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We run the simulation over the computation domain Œ�5000; 5000�, which is divided into
N D 1000 cells. We use three different values of the desingularization parameter " D 10�4, 10�8,
and 10�12 and compute the solutions until the final time t D 3000. The snapshots of the com-
puted solutions at t D 300, 1000, and 3000 are shown in Figure 7. As one can see, the solutions
obtained with the different values of " are almost indistinguishable. This clearly demonstrates that
the proposed central-upwind scheme is not sensitive to the selection of ".

Example 6 – Wet/dry front propagation over a V-shape bottom topography. In this example, we
simulate a package of water released on the left part of a V-shape valley (Figure 8). The water steams
down the left part and gradually accelerates. After passing the lowest point of the bottom, it starts
climbing up the right slope, meanwhile gradually losing its speed. Before the water starts streaming
down the right slope, the wet/dry front achieves its maximum height. Our goal is to study this front
propagation quantitatively.

We consider a V-shape bottom topography function,

B.x/ D
1
p
3
jx � 1j;

and take the friction coefficient n D 0:02. Initially, a package of water has a parabolic profile and
zero velocity:

h.x; 0/ D max ¹0;�1:5.x � 0:3/.x � 0:7/º ; q.x; 0/ � 0:

We take a computational domain to be sufficiently large (Œ0; 2�) so that the vibrating water body
never reaches the boundaries.
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Figure 7. Example 5: Snapshots of w, q, and u computed with " D 10�4, 10�8, and 10�12.
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Figure 8. Example 6: Water profiles at t D 0 (dashed line) and t D Tmax (solid line) computed withN D 400
(left) and 6400 (right).
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Figure 9. Example 6: Zoom at the wet/dry fronts of the computed and reference (N D 25600) solutions.

Table IV. Example 6: The L1-errors and conver-
gence rates for h and q.

h q

N L1-error Rate L1-error Rate

100 1.40E-03 �� 9.13E-04 ��
200 5.24E-04 1.42 3.39E-04 1.43
400 2.00E-04 1.39 1.25E-05 1.44
800 9.47E-05 1.08 6.14E-05 1.02
1600 5.04E-05 0.91 3.75E-06 0.71
3200 2.26E-05 1.16 1.68E-06 1.16
6400 9.19E-06 1.30 6.63E-06 1.34

We run the computation on different grids varying the number of cells N from 100 to 6400 and
compute a reference solution using N D 25600. According to the reference solution, the wet/dry
front arrives at its highest point on the right slope at time Tmax D 0:87839. In Figure 8, we plot the
water profile computed with N D 400 and 6400 at t D 0 and t D Tmax. Also, in Figure 9, we zoom
at the wet/dry front area and compare the solutions computed using N D 400, 1600, and 6400 with
the reference solution. Finally, in Table IV, we show the L1-norm of the errors and compute the
experimental convergence rates, which are slightly above 1. This rate is expected given the fact that
the solution is not smooth.

4.2. Two-dimensional examples

Example 7 – Oscillating lake. Similar to the 1-D Example 5, we consider shallow water flow
with a wet/dry front in a frictional parabolic bowl. This example is a modification of the oscillating
lake example from [43]: as in the 1-D case, we replace the linear friction term with the nonlinear
(Manning) one. Our goal is to demonstrate the ability of the proposed central-upwind scheme to
accurately capture wet-dry fronts.
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Following [43], we take the parabolic bottom topography,

B.x; y/ D
1

900000
.x2 C y2/;

and the following initial conditions:

w.x; y; 0/Dmax¹k1xCk2yC8:75; B.x; y/º; q.x; y; 0/ � 0; p.x; y; 0/D5.w.x; y; 0/�B.x; y//;

where k1 D 0:002303379160180876 and k2 D 0:0005. We use the Manning friction term with the
coefficient n D 0:02.

We run the simulation until the final time Tmax D 100 in the computation domain
Œ�5000; 5000�� Œ�5000; 5000�, which is divided intoN �N grid cells withN D 50, 100, 200, 400,
and 800. The fine mesh (N D 800) solution is shown in Figure 10, where we show the computed
water surface (w), water depth (h), as well as the discharges (q and p), and velocities (u and v).
As one can see, the wet/dry front is quite sharply captured by the central-upwind scheme, and the
velocities, which are computed using the desingularization procedure near the front, do not contain
large spikes, and thus, the efficiency of the scheme is maintained.

−4000 −2000 0 2000 4000

−4000

−2000

0

2000

4000

Figure 10. Example 7: Solution (w, h, q, u, p, and v) computed using the fine 800 � 800 grid.
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To verify the rates of convergence of the proposed method, we measure the difference between the
solutions computed on two consecutive grids using the weighted L1-differences, which are defined
as follows:

k�N �  N k1 WD
1

N 2

NX
jD1

NX
kD1

j�Nj;k �  
N
j;kj;

where �N WD ¹�N
j;k
º and  N WD ¹ N

j;k
º are two functions prescribed on the N � N grid. To apply

this formula to the solutions computed on two different grids, we project the fine grid solution onto
the coarse grid using the conservative projection. Then, to measure the experimental convergence
rates r for h, we use the ratio of the weighted L1-differences:

r D log2

 
khN=2 � hN=4k1

khN � hN=2k1

!
:

The rates for q and p are computed similarly.
The obtained results, reported in Table V, indicate that the experimental convergence rate of the

proposed central-upwind scheme is slightly smaller than 2.
Example 8 – Rainfall runoff over an urban area. We consider another rainfall-runoff exam-

ple, which now occurs over a more complicated 2-D surface containing houses as outlined in
Figure 1 (right).

The setting corresponds to the laboratory experiment reported in [32]. The surface structure is
shown in Figure 11. The experimental setting was built to mimic an urban area within the labora-
tory simulator of size 2 � 2:5meters. To model urban buildings, several blocks were placed onto
the surface according to different geometries, three of which are shown in Figure 11. In these three
configurations, the houses are aligned in either the x-direction (Configuration X20), y-direction
(Configuration Y20), or both (Configuration S20). The bottom topography function B.x; y/ is
defined as

B.x; y/ D

²
.x; y/; outside the house region;
H.x; yI xh; yh/; inside the house region centered at .xh; yh/:

Table V. Example 7: The weighted L1-differences between the solutions computed on
consecutive grids and the corresponding convergence rates.

N khN � hN=2k1 Rate kqN � qN=2k1 Rate kpN � pN=2k1 Rate

100 9.35E-03 �� 2.56E-02 �� 3.73E-02 ��
200 2.72E-03 1.782 7.75E-03 1.724 9.98E-03 1.903
400 8.41E-04 1.694 2.42E-03 1.682 2.74E-03 1.864
800 2.63E-04 1.675 7.20E-04 1.745 7.73E-04 1.825
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Figure 11. Example 8: Three house configurations (X20 ,Y20, and S20) and contour plot of the urban area
structure S. In each configuration, the houses are placed in the blank rectangles such that the house ridges

coincide with the dotted lines.
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The precise data of the surface structure S.x; y/ were provided by Dr. Luis Cea, and the house-roof
configuration H.x; yI xh; yh/ was computed according to the following formulae:

H.x; yI xh; yh/ D
²
0:3 � jy � yhj; .x; y/ 2 Œxh � 0:15; xh C 0:15� � Œyh � 0:1; yh C 0:1�;
0; otherwise;
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Figure 12. Example 8: Outlet discharge (the experimental data, dashed line, versus the computed results,
solid line) as a function of time.

Figure 13. Example 8a: Special treatment of a house region. The house edges are considered to be a part of
an internal boundary. The rainfall on the roof is uniformly distributed into the shaded cells. There are two

cases: the one with the gutter system installed (left) and the one without such a system (right).
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for houses aligned in x-direction and

H.x; yI xh; yh/ D
²
0:3 � jx � xhj; .x; y/ 2 Œxh � 0:1; xh C 0:1� � Œyh � 0:15; yh C 0:15�;
0; otherwise;

for houses aligned in y-direction. Notice that across the walls of the houses, the bottom topography
is discontinuous, and thus, the bilinear interpolant (3.17) has very sharp gradients there.

Similarly, to the 1-D rainfall-runoff example, we set the following almost dry initial conditions:

h.x; y; 0/ � 0; q.x; y; 0/ � 0; p.x; y; 0/ � 0:

Figure 14. Example 8a: Outlet discharge (the experimental data, solid line, versus the computed results,
dashed line) as a function of time.

Figure 15. Example 8a: Outlet discharge as a function of time: convergence to a steady state when the rain
source is not switched off.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 78:355–383
DOI: 10.1002/fld



378 A. CHERTOCK ET AL.

The rain of a constant intensity starts falling at time t D 0 and stops at t D Ts , that is,

R.x; y; t/ D

8<:
1

12000
; 0 6 t 6 Ts;

0; otherwise:

In different experiments, different values of Ts D 20, 40, 60, or 1 have been used. The compu-
tational domain Œ�1; 1� � Œ0; 2:5� is divided into Nx � Ny uniform cells (we have taken Nx D 80

and Ny D 100). The solid wall boundary conditions have been set at the left, right, and top parts
of the boundary, while absorbing boundary conditions have been implemented at the lower part
(�1 6 x 6 1, y D 0). As in the 1-D case, we use the ghost cell technique, and the ghost cell values
are set to be

hj;0 WD 0; qj;0 WD 0; pj;0 WD 0; j D 1; : : : ; Nx :

At this boundary, the total outlet discharge is computed using �y
NxX
jD1

�
H
y

j;1=2

	.1/
.

In Figure 12, the outlet discharge is plotted as a function of time and compared with the
experimental data provided to us by Dr. Luis Cea. Notice that in some cases (for example, for Con-
figuration Y20 with Ts D 20 or 40 and Configuration S20), the computed curves have lower peaks
than the experimental ones. We believe that such a delay of outlet discharge can be explained by
inability of the system (1.2)–(1.4) to accurately model the situation occurring near the house walls
where the size of the jumps in the bottom topography is about 2-3 orders of magnitude larger than
the water depth. We therefore modify the model by removing the houses from the computational
domain and placing the entire rainwater, which would accumulate over the houses, near the house
walls inside the computational domain. The details of a modified approach are given in Example 8a.

Example 8a – Modified house treatment. We consider the same setting as in Example 8, but
make the following modifications.

First, we remove the houses from the computational domain, which becomes a punctured rectan-
gle. A typical hole is depicted in Figure 13: The house walls become the internal boundary, which is
numerically treated using the solid wall ghost cell technique. Second, we redistribute the rainwater
falling onto the roof so that it is placed inside the modified computational domain. In the laboratory
experiment, the water falling on the house blocks streams down from the long (lower) edges and
finally joins the surface water flow, while in reality, the gutter system is commonly used and the
rainwater streams down from the rain pipes typically located at the house corners.

In the numerical experiments, we adopt two different strategies to mimic the aforementioned two
draining situations. In both cases, the building-roof rainfall is uniformly distributed on certain cells

Figure 16. Example 8a: Water height snapshots at the steady state achieved when the rain source is not
switched off.
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Figure 17. Example 8a: Water height snapshots at times t D 15, 45, and 75 computed for Configurations
X20, Y20, and S20 with Ts D 40.

near and outside the building edges. These are the shaded cells in Figure 13. The modified rain
source can then be written as follows:

bR.x; y; t/ D
8̂̂<̂
:̂

1

12000

�
1C

Ah

As

�
; in the shaded cells;

1

12000
; otherwise;
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which is, as before, switched on only for t 2 Œ0; Ts�. Here, Ah is the area of the house, and As is
the area of the shaded region near that house. If the gutter system is installed, then in all studied
configurations (X20, Y20, and S20) with Nx D 80 and Ny D 100, we have

Ah

As
D
0:2 � 0:3

4�x�y
D 24:

If the gutter system is not installed, then this ratio depends on a house orientation, but since in this
numerical example, we take �x D �y D 1=40, then

Ah

As
D

0:2 � 0:3

2 � 0:3�x
D

0:2 � 0:3

2 � 0:3�y
D 4

for all of the configurations (X20, Y20, and S20).
Again, we compare the outlet discharges obtained by our numerical scheme and the laboratory

measurement. As we can see in Figure 14, our numerical results are now in much better agreement
with the experimental results, especially for Configurations Y20 (with Ts D 20 and 40) and S20. In
other cases, the achieved resolution is also slightly higher, though the improvement is not so essen-
tial. It should also be observed that in the case of a longer rain duration (Ts D 60), the computed
outlet discharge remains almost constant for t 2 Œ30; 60� for Configurations X20 and Y20. In fact,
if the rain source is not switched off (Ts D 1), the outlet discharge will converge to a steady state
as shown in Figure 15. The snapshots of a water height at this steady state are shown in Figure 16.

Finally, in Figure 17, we plot time snapshots of the water height obtained for Configurations X20,
Y20, and S20 (we now use Ts D 40). The graphs illustrate how the rainwater drains and clarify
the dependence of the water flow on the surface configuration. In the examples using Configuration
X20, the draining stream takes advantage of the space along the vertical central line x D 0 and
a big mainstream is formed. In the examples using Configurations Y20 and S20, there are houses
on the central line x D 0 that block the flow there. Therefore, the mainstream of draining water
has to bypass these houses, and thus, small ‘lakes’ are developed behind two of the houses, see
Configurations Y20 and S20 in Figure 17. This explains why the total amount of water flew out of
the domain may not be the same as in the measured data because in the experimental setting, the
‘lakes’ drain through the gaps between the building blocks and the bottom surface.

Remark 4.2
We would like to point out that the aforementioned two different strategies of modifying the
rain source term near the houses lead to practically the same results. In the reported numerical

Figure 18. Example 8a: Significance of the bottom friction. The solid line is the measured outlet discharge
for Configuration X20 with Ts D 20; the dashed line is the numerical outlet discharge for the same example

computed using the frictionless system (1.1).
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experiments, we have redistributed the rain falling onto the house into the cells along the longer
house edges (Figure 13, right) as discussed in the beginning of Example 8a.

Remark 4.3
Another point, we would like to clarify the necessity of including the bottom friction terms in the
studied shallow water model. In Figure 18, we compare the measured data with the numerical result
obtained by solving the frictionless system (1.1). In this case, the computed outlet discharge changes
dramatically even when the simplest Configuration X20 with Ts D 20 is considered.

5. CONCLUSION

We have studied the shallow water system with friction terms and developed a positivity preserv-
ing semi-discrete central-upwind scheme, which is well-balanced in the sense that it is capable of
exactly preserving special types of steady-state solutions: both the ‘lake-at rest’ and ‘slanted surface’
ones. Because of the presence of friction terms, the ODE system arising from the central-upwind
semi-discretization becomes stiff, and therefore, we have implemented an efficient semi-implicit
Runge-Kutta time integration method that sustains the well-balanced and sign preserving properties
of the semi-discrete scheme. We have tested the performance of the new method in a number of 1-D
and 2-D examples, including Example 8, which focuses on modeling the rainwater drainage in urban
areas that contain houses. Since the rainwater depth is typically several orders of magnitude smaller
than the height of the houses, a direct application of the shallow water equations leads to a sub-
stantial discrepancy between the numerical and experimental results. We therefore have developed a
special technique, according to which the houses are removed from the computational domain while
the rainwater is redistributed into the nearby areas. The new technique helps to achieve a remarkable
agreement between the numerical and experimental results.
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