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ABSTRACT
We review a class of Godunov-type finite-volume methods for hyperbolic systems of

conservation and balance laws—nonoscillatory central schemes. These schemes date

back to 1950s, when the first-order Lax–Friedrichs scheme was introduced. The central

Lax–Friedrichs scheme can be viewed as a simple alternative to the upwind Godunov

scheme, which was also introduced in the 1950s. The main idea in the construction

of both central and upwind first-order schemes is the same: use a global piecewise con-

stant approximation of the solution at a certain time level and evolve it in time to the

next time level exactly. The exact evolution is performed using the integral form of

the studied system of PDEs. The difference is in one small detail—which is in fact

not small at all—how to select the space–time control volume for the time evolution.

The key idea in the construction of central schemes is to choose these control volume

in such a way that no (localized) Riemann problems need to be solved at the evolution

step. This makes central schemes particularly simple and universal numerical tool for

general hyperbolic systems. On the other hand, central schemes are based on averaging

the nonlinear waves rather than resolving them and thus they have larger numerical

Handbook of Numerical Analysis, Vol. 17. http://dx.doi.org/10.1016/bs.hna.2016.09.008

© 2016 Elsevier B.V. All rights reserved. 525



dissipation than their upwind counterparts. In order to increase the resolution achieved

by central schemes, one has to increase their order. We describe how to design high-

order nonoscillatory central schemes and also discuss how to further decrease their

numerical dissipation without risking oscillations. The latter is achieved by utilizing

some upwinding information (local speeds of propagation) within the framework of

the Riemann-problem-solver-free central schemes and modifying the set of control

volumes used for the time evolution. This leads to another type of central schemes—

central-upwind schemes, whose derivation is reviewed in this work.

AMS Classification Codes: 65M08, 76M12, 35L65

Keywords: Hyperbolic systems of conservation and balance laws, Godunov-type

finite-volume methods, Staggered central schemes, Central-upwind schemes, Piece-

wise polynomial reconstruction

1 A VERY BRIEF THEORETICAL BACKGROUND

We consider one-dimensional (1D) hyperbolic systems of conservation laws,

qt + f ðqÞx ¼ 0, (1)

subject to the prescribed initial data

qðx,0Þ¼ q0ðxÞ: (2)

Here, x is a space variable, t is time, q ¼ q(x, t) is a vector of unknown quan-

tities in N , f(q) is the flux vector.

It is well known that solutions of the initial value problems (IVPs) (1), (2)

do not necessarily preserve their initial smoothness. Moreover, even when the

initial data are infinitely smooth, solutions of these IVPs may break down and

develop such nonsmooth structures as shock waves, contact discontinuities,

rarefaction waves and even singular d-shocks. In such a generic case, the non-

smooth solutions are nonclassical (weak) and they are to be understood in the

sense of distributions. Namely, we say that q is a weak solution of the IVP (1),

(2), if it satisfies the weak formulation of (1), (2),

Z∞

0

Z


qðx, tÞ’xðx, tÞ+ f ðqðx, tÞÞ’tðx, tÞ½ �dx dt +
Z


qðx,0Þ’ðx,0Þ dx¼ 0,

for any smooth and compactly supported test function’with supp’�� ½0,∞Þ.
Weak solutions, however, are not unique and to single out the unique physically

relevant solution, one needs to require the weak solution either to be the limit

of the vanishing viscosity approximation of the studied hyperbolic system or

satisfy a certain additional criterion such as an entropy condition. For this

and other analytical results on nonlinear hyperbolic partial differential equations
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(PDEs), we refer the reader, e.g., to Dafermos (2010), LeFloch (2002), Li et al.

(1998), Serre (1999), Smoller (1994) and Zheng (2001).

2 FINITE-VOLUME FRAMEWORK

Finite-volume methods are based on the integral form of the system (1),

which we integrate over a space–time control volume [a, b] � [c, d] to obtain

the following system of integral equations:

Zb

a

qðx,dÞ dx¼
Zb

a

qðx,cÞ dx�
Zd

c

f ðqðb, tÞÞ� f ðqða, tÞÞ½ �dt: (3)

If these equations are satisfied for any a < b and 0 � c � d, then the systems

(1) and (3) are equivalent for piecewise smooth weak solutions. Therefore,

Eq. (3) can be considered as a definition of a weak piecewise smooth solution,

and we would like to point out that only piecewise smooth solutions—not

general weak solutions—can be computed numerically.

In order to design a numerical method based on the integral equations (3),

we will first introduce small scales in both space (Dx) and time (Dt) and take

the space–time control volume to be x�Dx
2
,x+

Dx
2

� �
�½t, t+Dt�, for which

equation (3) after the division by Dx reads as

�qðx, t+DtÞ ¼ �qðx, tÞ�l f̂ x+
Dx
2
, t

� �
� f̂ x�Dx

2
, t

� �� �
, (4)

where l :¼ Dt
Dx

,

�qðx, tÞ : ¼ 1

Dx

Zx +Dx2

x�Dx
2

qðx, tÞ dx (5)

is a so-called sliding average of q, and

f̂ ðx, tÞ : ¼ 1

Dt

Zt+Dt

t

f ðqðx,tÞÞ dt (6)

is the averaged flux across x during the time interval [t, t + Dt].
Formula (4) serves as a starting point of finite-volume evolution, which is

performed in the following three steps. First, the computational domain is

split into nonoverlapping intervals (in fact, one may also consider overlapping

intervals as it was done in, e.g., Liu (2005), Liu et al. (2007), Liu et al. (2009)
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and Yang et al. (2015)). Then, if a (global in space) approximate solution is

available at time level t, one may use the definition of a sliding average (5)

to compute �qðx, tÞ at the centers of the selected intervals. Finally, one should

evaluate the averaged fluxes (6) to obtain the set of the sliding averages

�qðx, t+DtÞ at the same points in space. Finite-volume evolution via an arbi-

trary set of space–time control volumes is schematically shown in the (x, t)-
plane in Fig. 1.

Since the data obtained at the end of each finite-volume evolution step will

consist of the sliding averages computed at a certain set of points, construc-

tion of a finite-volume method should begin with selection of grid intervals,

which we denote by Cj :¼ðx
j� 1

2
, x

j+ 1
2
Þ. For the sake of simplicity, let us

assume that the mesh is uniform, that is, x
j+ 1

2
� x

j� 1
2
¼Dx for all j and the cell

centers are xj ¼ x
j� 1

2
+Dx=2. We now assume that the sliding averages over

the grid cells are available at time level tn. These sliding averages are called

the cell averages and denoted by

�q n
j : ¼ 1

Dx

Z
Cj

qðx, tnÞ dx:

Equipped with the given set of cell averages, one can easily obtain a

global piecewise constant approximation of the solution:

q
�n ðxÞ : ¼

X
j

�q n
j wCj

, (7)

where wCj
is the characteristic function of the interval Cj. We now can com-

plete the finite-volume evolution step, but the way the averaged fluxes,

f̂ ðx, tnÞ : ¼ 1

Dtn

Ztn+ 1

tn

f ðqðx, tÞÞ dt, tn+ 1 : ¼ tn +Dtn, (8)

are computed depends on the way the space–time control volumes are

selected. This is a crucial point in the construction of finite-volume methods.

t

x

t+Δt

FIG. 1 Space–time control volumes. Circles “∘” represent the centers of space intervals.
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There are two major approaches, which lead to two different classes of

schemes—upwind and central ones.

Remark 1. We note that the piecewise constant approximation (7) is only first-

order accurate. In order to increase the order of accuracy, one needs to use

higher-order interpolants instead of (7), as discussed in Section 5.

3 FIRST-ORDER UPWIND SCHEMES

The first finite-volume upwind scheme is the Godunov scheme proposed in

Godunov (1959). The importance of this work is recognized in the fact that

finite-volume methods are often called Godunov-type schemes.

In the upwind setting, the finite-volume evolution is carried out using the

space–time control volumes x
j� 1

2
, x

j+ 1
2

h i
�½tn, tn+ 1� outlined in Fig. 2 (left).

This means that, in fact, one simply needs to substitute the values x ¼ xj
and t ¼ tn into (4) to obtain

�q n+ 1
j ¼ �q n

j �l f̂ x
j+ 1

2
, tn

� �
� f̂ x

j� 1
2
, tn

� �h i
, (9)

and thus, in order to complete the construction of the scheme one has to eval-

uate the averaged fluxes

f̂ ðx
j+ 1

2
, tnÞ¼ 1

Dtn

Ztn + 1

tn

f q x
j+ 1

2
, t

� �� �
dt: (10)

After the integrals in (10) are (approximately) evaluated, one obtains the

corresponding numerical fluxes denoted by Hn

j+ 1
2

� f̂ x
j+ 1

2
, tn

� �
, and the result-

ing upwind scheme can be written as

�q n+ 1
j ¼ �q n

j �ln Hn

j+ 1
2

�Hn

j� 1
2

� �
, ln :¼Dtn

Dx
: (11)

In the classical Godunov scheme, the integrals in (10) are evaluated

exactly. This is possible thanks to the one of the most important properties

tn

tn+1

xj xj+1xj−1/2 xj+1/2xj−1 xj+1/2

tn+1

tn+1
2

tn

xj xj+1 xj+3/2xj−1/2

FIG. 2 Space–time control volumes: upwind (left) and central (right) settings.
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of hyperbolic systems—finite speed of propagation, which is determined by

the largest spectral radius of the Jacobian A(q) :¼ @f/@q calculated over the

entire computational domain at time t ¼ tn. Namely, the waves generated at

the cell interfaces x¼ x
j+ 1

2
at time t ¼ tn, at which the approximate solution

is a piecewise constant function qðx, tnÞ¼ q̂ nðxÞ, will not propagate faster than
with the speed

an :¼ max
j

r Að�qnj ÞÞ
� o

,
n

(12)

where r(A) is a spectral radius of the matrix A. Therefore, if the time step is

restricted by

Dtn �Dx
an

, (13)

the solution q x
j+ 1

2
, t

� �
at the time interval [tn, tn+1] needed to evaluate the time

integral in (10) will not be affected by the (nonlinear) waves generated at

other cell interfaces. Thus, in order to compute the required values of

q x
j+ 1

2
, t

� �
, one has to solve the following Riemann problem: the system (1)

subject to the initial data

qðx, tnÞ¼
�q n
j , if x< x

j+ 1
2
,

�q n
j+ 1, if x> x

j+ 1
2
,
:

(
(14)

prescribed at time t ¼ tn. It is well known (see, e.g., Dafermos, 2010; LeFloch,

2002; Li et al., 1998; Serre, 1999; Smoller, 1994; Zheng, 2001) that solutions

of Riemann problems for hyperbolic systems of conservation laws are self-

similar and therefore the corresponding wave propagation can be schemati-

cally shown using the straight lines originating at the points x
j+ 1

2
, tn

� �
in the

space–time plane, see Fig. 3 (left).

Remark 2. Note that in the literature, Riemann initial data are usually prescribed

at time t¼ 0 and the breaking point of the initial data is typically x¼ 0. However,

tn

tn+1

xj xj+1xj−1/2 xj+1/2xj−1 xj+1/2

tn+1

tn+1
2

tn

xj xj+1 xj+3/2xj−1/2

FIG. 3 Wave propagation in upwind (left) and central (right) settings. Dashed lines represent

Riemann fans generated at each cell interface at time t ¼ tn.
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due to the translation invariance of the hyperbolic systems (1), one can shift the

data by x
j+ 1

2
and tn without affecting any solution properties.

Since the self-similar solution of the Riemann problem (1), (14) is

qðx, tÞ¼R n

j+ 1
2

ðxÞ, where the self-similar coordinate is x¼ x� x
j+ 1

2

� �
=ðt� tnÞ

and t> tn, the solution q x
j+ 1

2
, t

� �
¼R n

j+ 1
2

ð0Þ for all t> tn and therefore the inte-

grals in (10) are immediately obtained. This results in the numerical fluxHn

j + 1
2

¼

f R n

j+ 1
2

ð0Þ
� �

and the classical Godunov scheme can be written as

�q n + 1
j ¼ �q n

j �ln f R n

j+ 1
2

ð0Þ
� �

� f R n

j� 1
2

ð0Þ
� �� �

: (15)

Unfortunately, the Godunov scheme (15) has a serious drawback: it relies

on the exact solution of the Riemann problem, which may be computationally

expensive and very hard (or even impossible) to obtain analytically. The

major difficulty in solving Riemann problems exactly is a very complicated

structure of their solutions. Indeed, for the N � N system (1) the solution of

the Riemann problem, in general, consists of N waves, which are not easy

to compute analytically.

Since 1960s many approximate Riemann problem solvers have been

designed as alternatives to the exact one used in (15). One of the possible stra-

tegies in constructing approximate solvers is to replace the exact wave struc-

ture with the approximate one. For instance, taking into account the fastest

waves only, one obtains the Rusanov scheme (see Rusanov, 1961), which

can be written in the form (11) with the following numerical flux:

Hn

j+ 1
2

¼ 1

2
f ð�q n

j+ 1Þ+ fð�q n

j
Þ

h i
�
an
j+ 1

2

2
�q n
j+ 1��q n

j

h i
, (16)

where an
j+ 1

2

are the local propagation speeds, computed using the spectral

radius of the Jacobian as follows:

an
j+ 1

2

¼ max r Að�q n
j+ 1ÞÞ,r Að�q n

j ÞÞ
� o

:
�n

(17)

Considering both fastest left- and right-going waves results in a more

accurate approximate Riemann problem solver, which leads to the Harten–
Lax–van Leer (HLL) scheme (see Harten et al., 1983), which can also be

put into the same form (11), but with a different numerical flux:

Hn

j+ 1
2

¼
an+
j+ 1

2

f ð�q n
j Þ�an�

j+ 1
2

fð�q n
j+ 1Þ

an+
j+ 1

2

�an�
j+ 1

2

+

an+
j+ 1

2

an�
j + 1

2

an+
j+ 1

2

�an�
j+ 1

2

�q n
j+ 1��q n

j �,
h

(18)
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where an	
j + 1

2

are the one-sided local propagation speeds, computed using the

largest and smallest eigenvalues of the Jacobian as follows:

an+
j+ 1

2

¼max lN Að�q n
j + 1ÞÞ,lN Að�q n

j Þ
� �

,0
� o

, an�
j+ 1

2

¼ min l1 Að�q n
j+ 1ÞÞ,l1 Að�q n

j Þ
� �

,0
� o

:
n�

(19)

Here, l1(A) �⋯ � lN(A) denote the ordered set of the eigenvalues of the

matrix A. The HLL scheme was further improved by taking into account of

the presence of slower (linear) contact waves in Einfeld (1988) and Toro

et al. (1994), where modified HLL schemes were developed.

Remark 3. We note that both Rusanov and HLL schemes are, in fact, central

schemes; see Remark 13.

An alternative approach for designing approximate Riemann problem sol-

vers was proposed by Roe in 1981. The idea is to locally replace a complicated

nonlinear hyperbolic system with a linear one, namely, to evaluate the numeri-

cal flux at x¼ x
j+ 1

2
by solving a linearized system with constant coefficients

qt +A
n

j+ 1
2

qx ¼ 0, (20)

subject to the same initial data (14). Here, An

j+ 1
2

is a proper linearization of the

Jacobian A(q). The classical Roe scheme is obtained by constructing the Roe

matrix Â
n

j + 1
2
satisfying the condition f ð�q n

j+ 1Þ� fð�q n
j Þ¼ Â

n

j+ 1
2
ð�q n

j + 1��q n
j Þ, which

guarantees that if the states �q n
j and �q n

j + 1 correspond to an isolated shock wave,

its speed will coincide with the speed of the linearized wave, and taking

An

j+ 1
2

¼ Â
n

j+ 1
2
in (20). For some systems, however, it is not easy to construct the

Roe matrix. A much simpler approach was advocated in Buffard et al. (2000),

Gallouët et al. (2002) and Masella et al. (1999), where the so-called VFRoe

scheme was developed by simply taking An

j+ 1
2

¼Aðq
j+ 1

2
Þ, where

q
j+ 1

2
:¼ 1

2
ð�q n

j+ 1 + �q
n
j Þ.

For both the Roe and VFRoe schemes, the solution of the IVP (20) and

(14) is self-similar and easy to obtain by diagonalizing the system (20) using

the characteristic variables. We denote this solution by qðx, tÞ¼Ln

j+ 1
2

ðxÞ so

that the numerical flux in (11) reduces to Hn

j+ 1
2

¼ f L n

j+ 1
2

ð0Þ
� �

, and the result-

ing scheme reads as

�q n+ 1
j ¼ �q n

j �ln f L n

j+ 1
2

ð0Þ
� �

� f L n

j� 1
2

ð0Þ
� �� �

: (21)

For a detailed description and derivation of the aforementioned and

other popular approximate Riemann problem solvers as well as for their com-

parative study, we refer the reader to Toro (2009); see also Godlewski and

Raviart (1996), Kr€oner (1997) and LeVeque (2002).
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4 FIRST-ORDER CENTRAL SCHEMES

Central schemes can be considered as a simple Riemann-problem-solver-free

alternative to upwind schemes. Unfortunately, a straightforward central-

difference approximation of the space derivatives in (1) leads to the finite-

difference scheme

q n+ 1
j ¼ q n

j �
ln

2
f ðq n

j+ 1Þ� fðq n
j�1Þ

h i
, (22)

which is known to be unconditionally unstable and thus prone to uncontrolled

oscillations. In 1954, Lax (1954) and Friedrichs (1954) proposed a stabilized

version of the scheme (22)—the celebrated Lax–Friedrichs scheme:

q n+ 1
j ¼ q n

j + 1 + q
n
j�1

2
�ln

2
fðq n

j+ 1Þ� f ðq n
j�1Þ

h i
: (23)

Note that in both (22) and (23), the evolved quantities are the point values

of q at the grid nodes rather than the cell averages. Even though these

schemes can be artificially put into the finite-volume form (11) with appro-

priate fluxes, they are not Godunov-type schemes in the sense that they

cannot be rigorously derived using the finite-volume framework described

in Section 2.

The first-order Godunov-type central scheme is obtained using exactly the

same finite-volume evolution equations (4)–(6), which were used to design

upwind schemes in Section 3, but sampled at a different set of points:

x
j+ 1

2
, tn

� �
instead of (xj, t

n), as illustrated in Fig. 2. Compared to the upwind

setting, the space–time control volumes [xj, xj+1] � [tn, tn+1] used in the con-

struction of central schemes, is shifted by Dx/2, see Fig. 2 (right).

We stress that while the data at time level t ¼ tn is given over the original

grid x
j� 1

2
, x

j+ 1
2

h i
, the new computed solution will be realized over the stag-

gered grid. Indeed, Eqs. (4)–(6) will now lead to

�q n+ 1

j+ 1
2

¼ 1

Dx

Zxj+ 1

xj

q
� nðxÞ dx� ln

Dtn

Ztn + 1

tn

fðqðxj+ 1, tÞÞ� fðqðxj, tÞÞ
	 


dt: (24)

The space integral on the right-hand side (RHS) of (24) is just an integral of a

piecewise constant function (7) and thus can be exactly evaluated in a

straightforward manner. The time integrals on the RHS of (24) are not easy

to compute unless the timestep restriction is tightened and Dtn is taken to be

twice smaller compared to (13), namely,

Dtn � Dx
2an

: (25)

As one can see in Fig. 3 (right), no waves generated at the cell interfaces can

reach the vertical segments at x ¼ xj for t 2 [tn, tn+1], and thus the solution of
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the system (1) subject to the piecewise constant initial data qðx, tnÞ¼ q
� nðxÞ

remains constant there. Therefore, after evaluating all of the integrals in

(24), we obtain the first-order staggered central scheme—staggered Lax–
Friedrichs scheme (see Nessyahu and Tadmor, 1990):

�q n+ 1

j+ 1
2

¼ �q n
j + 1 + �q

n
j

2
�ln f ð�q n

j+ 1Þ� f ð�q n
j Þ�:

h
(26)

Central schemes (both Lax–Friedrichs and staggered Las-Friedrichs ones)

are extremely simple and universal tool for solving hyperbolic systems of

conservation laws. They, however, have a substantial disadvantage compared

to the upwind schemes—their numerical viscosity is much larger (see, e.g.,

Tadmor, 1984a,b), which leads to excessive smearing of discontinuous and

other “rough” parts of the computed solution. In fact, first-order upwind

schemes are also quite diffusive and cannot provide high resolution of non-

smooth parts of the solution (especially of linear contact waves) unless very

small Dx and Dtn are used and the latter may be computationally unaffordable.

The way to enhance the resolution is to increase the order of the scheme.

5 HIGH-ORDER FINITE-VOLUME METHODS

We first note that both the Godunov (15) and staggered Lax–Friedrichs (26)
schemes are based on the exact finite-volume evolution of the computed solu-

tion. Therefore, the loss of accuracy occurs at the approximation step, when

the global first-order accurate piecewise constant interpolant (7) is recon-

structed from the set of computed cell averages. In order to increase the (formal)

order of accuracy of the approximation and thus of the entire scheme, one should

replace the piecewise constant approximation with a higher-order one.

5.1 Second-Order Upwind Schemes

The first second-order Godunov-type scheme was introduced by van Leer in

1979, where the so-called MUSCL approach was proposed. It is based on a

piecewise linear reconstruction

q
� nðxÞ :¼

X
j

�q n
j + ðqxÞnj ðx� xjÞ

h i
wCj

, (27)

which will be second-order accurate provided the slopes ðqxÞnj � qxðxj, tnÞ
within at least first order of accuracy. To keep the resulting scheme from

being too oscillatory, one has to use a nonlinear limiter in the computation

of ðqxÞnj to ensure that no large over- or undershoots of size Oð1Þ are created

at the cell interfaces. A library of such limiters is available; we refer the

reader, e.g., to Godlewski and Raviart (1996), Kr€oner (1997), LeVeque
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(2002), Lie and Noelle (2003), Nessyahu and Tadmor (1990), Sweby (1984)

and van Leer (1979). They may be applied to the vector quantity q either in

a componentwise manner, that is, to each component of q directly, or using

the local characteristic decompositions as it was done, for instance, in Qiu

and Shu (2002). The latter approach results in the schemes that are in general

less oscillatory, but more computationally expensive.

When the piecewise constant interpolant is replaced with a piecewise lin-

ear one, the finite-volume evolution procedure must be modified. It is not so

easy to do in the framework of upwind schemes, since now instead of solving

the Riemann problems at each cell interface, one has to solve the generalized

Riemann problem: the system (1) subject to the initial data

qðx, tnÞ¼
�q n
j + ðqxÞnj ðx� xjÞ, if x< x

j+ 1
2
,

�q n
j+ 1 + ðqxÞnj+ 1ðx� xj+ 1Þ, if x> x

j+ 1
2
,

(
(28)

prescribed at time t ¼ tn. For certain hyperbolic systems of conservation laws

the exact solution of the generalized Riemann problem can be constructed; see

Ben-Artzi and Falcovitz (2003). However, these solutions are very compli-

cated and quite computationally expensive. As an alternative, one can design

an approximate generalized Riemann problem solver, see, e.g., Godlewski and

Raviart (1996), Kr€oner (1997), LeVeque (2002) and Toro (2009).

5.2 Second-Order Nessyahu–Tadmor Scheme

Another alternative is to switch to the central framework, in which the fact

that the data are now piecewise linear does not lead to any substantial increase

in the level of complexity since the solution still remains smooth at the cell

centers for t 2 [tn, tn+1] provided the timestep restriction (25) with

an :¼ max
x

r Aðq� nðxÞÞ
� �n o

is satisfied. After noticing this, the second-order staggered central scheme—

the Nessyahu–Tadmor scheme (Nessyahu and Tadmor, 1990)—is now

designed as follows.

First, we evaluate the space integral on the RHS of (24) exactly, which is

straightforward since we simply need to integrate two linear pieces:

1

Dx

Zxj+ 1

xj

q
� nðxÞ dx¼ 1

Dx

Zxj+12
xj

�q n
j +ðqxÞnj ðx�xjÞ

h i
dx+

Zx + 1

x
j+

1
2

�q n
j + 1+ðqxÞnj + 1ðx�xj+ 1Þ

h i
dx

8>><
>>:

9>>=
>>;

¼
�q n
j+ 1 + �q

n
j

2
+
Dx
8

ðqxÞnj �ðqxÞnj+ 1
h i

:

(29)
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We then approximate the time integrals of the smooth functions of t on the

RHS of (24) using the midpoint rule so that

1

Dtn

Ztn + 1

tn

f ðqðxj, tÞÞ dt� f q
n+ 1

2
j

� �
, (30)

where the values of q at the points ðxj, tn+ 1

2Þ marked by the filled circles in

Figs. 2 and 3 on the right can be obtained using the Taylor expansion in

t (which is valid since the solution is smooth there) in the following way:

q
n+ 1

2
j ¼ q

� n ðxjÞ+ Dtn

2
qtðxj, tnÞ¼ �q n

j �Dtn

2
fð�q n

j Þx: (31)

Here, the numerical derivatives f ð�q n
j Þx can be computed either using

fð�q n
j Þx ¼Að�q n

j ÞðqxÞnj , or by applying the same limiter used in computing the

slopes in (27) to the set of the flux values f ðq n
j Þ. Finally, we substitute

(29)–(31) into (24) and obtain the Nessyahu–Tadmor scheme:

�q n+ 1

j+ 1
2

¼ �q n
j+ 1 + �q

n
j

2
+
Dx
8

ðqxÞnj �ðqxÞnj+ 1
h i

�ln f q
n+ 1

2
j+ 1

� �
� f q

n+ 1
2

j

� �� �
: (32)

Remark 4. One can view the Nessyahu–Tadmor scheme as a predictor–
corrector method, in which (31) is a first-order predictor and (32) is the

second-order corrector.

Remark 5. Staggered central schemes have been extended to the case of mul-

tiple space dimensions both on Cartesian (Jiang and Tadmor, 1998) and

unstructured (Arminjon et al., 1997) grids.

5.3 High-Order Schemes

In order to further increase the order of the finite-volume methods, one needs to

further increase the accuracy of the piecewise polynomial reconstruction. Third-

order schemes can be constructed using piecewise parabolic interpolants q
� nðxÞ.

It should be pointed out though that it is much harder to ensure nonoscillatory

properties of higher than second order piecewise polynomials. For instance,

several third-order piecewise parabolic reconstructions satisfying the number

of extrema nonincreasing property were introduced in Kurganov and Petrova

(2001), Liu and Osher (1996) and Liu and Tadmor (1998). An alternative

approach of constructing high-order essentially nonoscillatory interpolant is

based on the idea of differentiating in the direction of smoothness, which was

realized in so-called ENO reconstructions; see, e.g., Abgrall (1994), Cockburn

et al. (1998) and Harten et al. (1987). Other popular high-order reconstructions

are based on the idea of taking a linear combinations of several polynomial

pieces (each of which is obtained by differentiating in different directions) with

536 Handbook of Numerical Analysis



the weights inversely proportional to the their smoothness measured in Sobolev

spaces. This leads to a class of weighted ENO (WENO) schemes; see, e.g.,

Cockburn et al. (1998), Jiang and Shu (1996), Shi et al. (2002), Shu (2003)

and Shu (2009). Unlike their counterparts, WENO reconstructions employ poly-

nomials of lower degree and thus they are not uniformly high-order—only the

data needed for evolving solutions in time (point values of the solution at the

cell interfaces) are computed within the desired high accuracy. Therefore, when

applied in the staggered central framework, WENO reconstructions have to be

modified to accurately approximate the integrals
R xj+1

2
xj q

� nðxÞ dx andR xj+ 1
x
j +
1
2

q
� nðxÞ dx. This was achieved in Bianco et al. (1999), Levy et al. (1999),

Levy et al. (2000) and Levy et al. (2002), where a class of central WENO

(CWENO) schemes was introduced.

Remark 6. For finite-volume methods of higher than second order, recons-

truction procedures based on nonlinear limiters are typically computa-

tionally expensive. One can alternatively enforce stability by adding an

artificial viscosity and not using any limiters. This idea was first proposed

in 1950 in von Neumann and Richtmyer (1950) and since then it was

notably adopted in many works including Caramana et al. (1998),

Shchepetkin and McWilliams (1998), Wilkins (1980) and among others.

One, however, has to be careful since adding artificial viscosity terms

may cause either the discontinuities to be oversmeared or the oscillations

not to be sufficiently damped. Highly accurate and robust artificial viscos-

ity methods with the viscosity coefficients being proportional to either the

weak local residual (Kurganov and Liu, 2012) or entropy production

(Guermond and Pasquetti, 2008; Guermond et al., 2011) have been recently

proposed.

6 CENTRAL-UPWIND SCHEMES

Even though the use of higher-order reconstructions significantly improves

the resolution achieved by both upwind and staggered central schemes, central

schemes may suffer from excessive numerical viscosity, which is of order

OððDxÞ2r=DtnÞ, where r is the formal order of the scheme. In order to illus-

trate this point, we rewrite the simplest staggered central scheme—the first-

order Lax–Friedrichs scheme—in the following equivalent form:

qn+ 1
j+ 1

2

�qn
j+ 1

2

Dtn
+
f ðqnj+ 1Þ� f ðqnj Þ

Dx
¼ðDxÞ2

8Dtn


qnj+ 1�2qn

j+ 1
2

+ qnj

ðDx=2Þ2 : (33)

Note that here we have replaced the cell averages of q in (26) with the

corresponding point values (this can be done since for both first- and second-

order schemes, these quantities are equal). The terms on the left-hand side
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(LHS) of (33) clearly approximate the corresponding terms on the LHS of (1)

and the term on the RHS of (33) represents the numerical viscosity with the

viscosity coefficient being OððDxÞ2=DtnÞ.
Therefore, numerical viscosity present in staggered central schemes is partic-

ularly largewhen sufficiently small timesteps are enforced, for instance, due to the

presence of (degenerate) diffusion and/or source terms, or if the final computa-

tional time is very large as it may be the case when steady-state solutions are to

be captured. One can reduce the numerical dissipation by modifying the central

finite-volume evolution procedure. This leads to a new class of Godunov-type

Riemann-problem-solver-free central schemes—central-upwind schemes. In the

remaining part of this section, we show the derivation of the second-order central-

upwind scheme along the lines of Kurganov and Lin (2007).

The key idea is to select space–time control volumes in the finite-volume

evolution procedure (3) adaptively depending on the size of Riemann fans

generated at each cell interface. More precisely, we assume that, as before,

the computed solution at time t¼tn is available and realized in terms of the

cell averages �q n
j

n o
over the grid x

j� 1
2
, x

j+ 1
2

h i
. We first introduce the follow-

ing notations:

qn�
j+ 1

2

:¼ lim
x!x

j+
1
2

�q
� nðxÞ¼ �q n

j +
Dx
2
ðqxÞnj ,

qn+
j+ 1

2

:¼ lim
x!x

j+
1
2

+
q
� nðxÞ¼ �q n

j + 1�
Dx
2
ðqxÞnj+ 1

(34)

for the reconstructed one-sided point values of q at the points ðx
j+ 1

2
, tnÞ, and

an +
j + 1

2

¼ max lN A qn+
j+ 1

2

� �� �
,lN A qn�

j+ 1
2

� �� �
,0

� �
,

an�
j + 1

2

¼ min l1 A qn+
j+ 1

2

� �� �
,l1 A qn�

j+ 1
2

� �� �
,0

� � (35)

for the one-sided local speeds of propagation, which reduces to (19) in the

case of the first-order piecewise constant reconstruction.

Remark 7. In fact, the estimate of one-sided local speed (35) is only true in the

case of a convex flux f(q). In the nonconvex case, a more careful estimate is

required; see Kurganov et al. (2007).

Remark 8. It might be impossible to exactly evaluate the largest and smallest

eigenvalues of the Jacobian required in (35). In this case, one may use an

upper bound on lN and a lower bound on l1 as it was done in, e.g.,

Kurganov and Petrova (2009) and Liu et al. (2015).

We then take the control volumes xn
j+ 1

2
,‘, x

n

j+ 1
2
,r

� �
�½tn, tn+ 1� that contain all

of the waves generated at time t ¼ tn at the corresponding cell interfaces
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x¼ x
j + 1

2
; see Fig. 4 (left). The left and right boundaries of these control volumes,

xn
j+ 1

2
,‘
:¼ xj + a

n�
j+ 1

2

Dtn and xn
j+ 1

2
,r
:¼ xj + a

n +

j + 1
2

Dtn, respectively, are determined

by the one-sided local speeds of propagation and therefore, the solution of the

IVP (1) and (28) remains smooth at x¼ xn
j + 1

2
,‘

and x¼ xn
j + 1

2
,r

for t 2 [tn, tn+1].

Hence, the solution may be evolved to the time level t¼ tn+1 exactly in the same

manner as in the Nessyahu–Tadmor scheme, namely, we obtain the new cell

averages, denoted by �q int

j+ 1
2

, as follows. First, we use (3) to obtain

�q
int
j+ 1

2
¼ 1

xn
j+ 1

2,r
� xn

j+ 1
2,‘

Zx
n

j +
1
2,r

xn
j+

1
2,‘

q
� nðxÞ dx�

Ztn + 1

tn

f qðxn
j+ 1

2,r
, tÞ

� �
� f qðxn

j+ 1
2,‘

, tÞ
� �� �

dt

8>>><
>>>:

9>>>=
>>>;
:

(36)

Then, evaluating the first integral on the RHS of (36) exactly and using the

midpoint rule for the flux integrals in (36), we arrive at

�q
int
j+ 1

2
¼ 1

an+
j+ 1

2

�an�
j+ 1

2

an+
j+ 1

2

q n
j+ 1

2,r
�an�

j + 1
2

q n
j+ 1

2,‘
+
Dtn

2
an�
j + 1

2

� �2

ðqxÞnj � an+
j+ 1

2

� �2

ðqxÞnj + 1
" #(

� f q
n+ 1

2

j+ 1
2,r

� �
� f q

n+ 1
2

j+ 1
2,‘

� ��� �
,

(37)

where the point values of q at xn
j+ 1

2
,‘, t

n

� �
and xn

j+ 1
2
,r , t

n

� �
are obtained

from q
� nðxÞ:

q n
j+ 1

2,‘
¼ �q n

j +
Dx
2

+ an�
j+ 1

2

Dtn
� �

ðqxÞnj , q n
j+ 1

2,r
¼ �q n

j+ 1�
Dx
2
�an+

j + 1
2

Dtn
� �

ðqxÞnj+ 1 (38)

and the point values of q at xn
j+ 1

2
,‘, t

n+ 1

2

� �
and xn

j+ 1
2
,r , t

n+ 1

2

� �
are predicted

using the corresponding Taylor expansions:

q
n+ 1

2

j+ 1
2
,‘

¼ q n

j + 1
2
,‘
�Dtn

2
f ð�q n

j Þx, q
n+ 1

2

j+ 1
2
,r

¼ q n

j + 1
2
,r�

Dtn

2
fð�q n

j+ 1Þx: (39)

xj−1/2 xj+1/2xj

tn

tn+1

xj+1xj−1 xj−1/2 xj+1/2xj

tn

tn+1

xj+1xj−1

FIG. 4 Central-upwind control volumes over nonsmooth (left) and smooth (right) parts of the

solution. Dashed lines represent Riemann fans generated at each cell interface at time t ¼ tn.
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As one can see in Fig. 4 (left), even though the control volumes

xn
j+ 1

2
,‘, x

n

j+ 1
2
,r

� �
�½tn, tn+ 1� contain all of the Riemann fans, they do not cover

the entire strip �½tn, tn+ 1� since there are gaps between these control volumes,

xn
j� 1

2
,r , x

n

j+ 1
2
,‘

� �
�½tn, tn+ 1�, shown in Fig. 4 (right), where the solution is

smooth. The solution there is evolved using the same integral form (3), which

results in

�q int
j ¼ �q n

j +
Dtn

2
an +
j + 1

2

+ an�
j+ 1

2

� �
ðqxÞnj �

Dtn

Dx� an+
j+ 1

2

�an�
j+ 1

2

� �
Dtn

f q
n+ 1

2

j+ 1
2,‘

� �
� f q

n+ 1
2

j� 1
2,r

� �� �
,

(40)

where the predicted values of q are, as before, given by (39).

At this stage, the approximate solution at time level t ¼ tn+1 is realized in

terms of its cell averages �q int

j+ 1
2

� �
and �q int

j

n o
, distributed over the nonuniform

mesh
S

j xn
j� 1

2
,r , x

n

j+ 1
2
,‘

� �
[ xn

j+ 1
2
,‘, x

n

j+ 1
2
,r

� �� �
. This solution is quite accurate,

but impractical since the number of cells is doubled in just one time step,

and this is the reason why it was denoted by qint, where “int” stands for the

intermediate. In order to complete construction of the central-upwind scheme,

we need to project these intermediate data back onto the original grid
S

jCj.

To this end, we use the intermediate data to reconstruct a conservative, non-

oscillatory, second-order piecewise linear interpolant

q
� intðxÞ :¼

X
j

�q int
j+ 1

2

+ ðqxÞintj+ 1
2

x�
xn
j + 1

2,‘
+ xn

j+ 1
2,r

2

 !" #
w

xn
j +

1
2,‘

, xn
j+

1
2,r

� �
8>><
>>:

+ �q int
j + ðqxÞintj x�

xn
j� 1

2,r
+ xn

j+ 1
2,‘

2

 !" #
w

xn
j� 1

2,r
, xn

j+
1
2,‘

� �
9>>=
>>;
,

(41)

and average it over the cells Cj to end up with

�q n+ 1
j ¼ lnan+

j� 1
2

�q int

j� 1
2

+ 1 + ln an�
j� 1

2

�an+
j+ 1

2

� �� �
�q int
j

�lnan�
j+ 1

2

�q int

j+ 1
2

+
lnDtn

2
an+
j+ 1

2

an�
j+ 1

2

ðqxÞintj+ 1
2

�an+
j� 1

2

an�
j� 1

2

ðqxÞintj� 1
2

� �
:

(42)
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In fact, we do not need to compute the slopes ðqxÞintj in (41) since they are

“averaged out” at the averaging step (42); see Fig. 5. The slopes ðqxÞintj+ 1
2

are to

be computed using a nonlinear limiter. This may be done in several different

ways. One of the sharpest possible approached, proposed in Kurganov and Lin

(2007), uses the cell averages �q int

j + 1
2

and the predicted point values of q at time

level t ¼ tn+1:

q n+ 1

j+ 1
2
,‘
¼ q n

j+ 1
2
,‘
�Dtnfð�q n

j Þx, q n+ 1

j+ 1
2
,r
¼ q n

j+ 1
2
,r
�Dtnfð�q n

j+ 1Þx (43)

with q n

j + 1
2
,‘

and q n

j+ 1
2
,r

given by (38). The slopes are then obtained using the

minmod limiter (see, e.g., Lie and Noelle, 2003; Nessyahu and Tadmor,

1990; Sweby, 1984; van Leer, 1979):

ðqxÞintj+ 1
2

¼minmod

�q int

j+ 1
2

�q n+ 1

j+ 1
2
,‘

d
,

q n+ 1

j+ 1
2
,r
��q int

j+ 1
2

d

0
@

1
A, (44)

where d¼ xn
j + 1

2
,r� xn

j+ 1
2
,‘

� �
=2¼Dtn

2
an+
j+ 1

2

�an�
j + 1

2

� �
and the minmod function,

defined as

minmodða,bÞ¼ signðaÞ + signðbÞ
2


 min jaj, jbjf g,

is applied in (44) in a componentwise manner.

The resulting fully discrete central-upwind scheme (42), (37)–(40), (43),
(44) is very accurate and robust and its numerical dissipation vanishes as

maxn Dtnf g! 0 (unlike the numerical dissipation of the Nessyahu–Tadmor

and other staggered central schemes). This scheme has been tested on a number

of numerical examples in Kurganov and Lin (2007); see also Kurganov et al.

(2001); Kurganov and Tadmor (2000), where different, more dissipative ver-

sions of the fully discrete central-upwind schemes were derived and studied.

intqj
intqj−1/2

intqj+1/2

xj xj+1/2xj−1/2 xj+1xj−1

FIG. 5 Projection of the intermediate data onto the original grid.

Central Schemes: A Powerful Black-Box Solver Chapter 20 541



6.1 Semidiscrete Central-Upwind Schemes

A major disadvantage of the fully discrete central-upwind scheme (42), (37)–
(40), (43), (44) is its relatively high complexity. This is especially pronounced

when the scheme is extended to the two-dimensional (2D) case in a rigorous,

genuinely multidimensional—not in a “dimension-by-dimension”—manner;

see Kurganov and Lin (2007), Kurganov and Petrova (2001), Kurganov and

Petrova (2005) and Kurganov et al. (2016). However, one may pass to a semi-

discrete limit as maxn Dtnf g! 0 and derive semidiscrete central-upwind

schemes, which are substantially simpler than their fully discrete counterparts

and yet accurate and robust.

In order to derive a semidiscrete central-upwind scheme, we need to com-

pute the following limit:

d

dt
�qjðtnÞ¼ lim

Dtn!0

�q n+ 1
j ��q n

j

Dtn
: (45)

After substituting (42) and then (37)–(40), (43) and (44) into (45) (see details

in Kurganov and Lin (2007) and also in Kurganov et al. (2001), Kurganov and

Petrova (2000) and Kurganov and Tadmor (2000)), we arrive at a particularly

simple semidiscrete scheme, which can be written in the flux form as follows:

d

dt
�qjðtÞ¼�

H
j+ 1

2
ðtÞ�H

j� 1
2
ðtÞ

Dx
(46)

with the numerical fluxes

H
j+ 1

2
ðtÞ¼

a +

j+ 1
2

f q�
j+ 1

2

� �
�a�

j+ 1
2

f q+

j+ 1
2

� �

a +

j + 1
2

�a�
j+ 1

2

+ a+

j+ 1
2

a�
j+ 1

2

q +

j+ 1
2

�q�
j+ 1

2

a +

j+ 1
2

�a�
j+ 1

2

�d
j + 1

2

2
4

3
5,
(47)

where

d
j+ 1

2
¼ 1

2
lim
Dtn!0

DtnðqxÞ int

j + 1
2

n o
¼minmod

q +

j+ 1
2

�q*
j+ 1

2

a +

j+ 1
2

�a�
j+ 1

2

,

q*
j+ 1

2

�q�
j+ 1

2

a+

j+ 1
2

�a�
j+ 1

2

0
@

1
A (48)

is a built-in “anti-diffusion” term and

q*
j+ 1

2

¼ lim
Dtn!0

�q int

j+ 1
2

¼
a +

j + 1
2

q+

j+ 1
2

�a�
j + 1

2

q�
j+ 1

2

� f ðq+

j+ 1
2

Þ� f ðq�
j+ 1

2

Þ
� �

a+

j+ 1
2

�a�
j+ 1

2

(49)

In (47)–(49), the reconstructed point values q	
j + 1

2

and the local one-sided

speeds of propagation a	
j+ 1

2

are given by (34) and (35), respectively, but
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without the upper index n, since these quantities are now computed at some

time level t rather than tn. Note that all of the terms on the RHS of (47) and

in (48) and (49) depend on t, but we omit this dependence for the sake of

brevity.

Remark 9. The semidiscretization (46)–(49) results in a system of time-

dependent ODEs, which should be integrated using a sufficiently accurate

and stable ODE solver. In the purely convective and convective-dominated

cases, the ODE system is nonstiff and we usually solve it using the three-stage

third-order strong stability preserving Runge-Kutta method; see Gottlieb et al.

(2011, 2001).

Remark 10. Both the fully and semidiscrete central-upwind schemes belong to

the class of Godunov-type Riemann-problem-solver-free central schemes, but

since they are constructed using some upwind information (one-sided local

speeds), we call them central-upwind schemes.

Remark 11. In the older works on central-upwind schemes (Kurganov et al.,

2001; Kurganov and Petrova, 2000, 2001; Kurganov and Tadmor, 2000,

2002), the slopes ðqxÞ int

j+ 1
2

in (42) were not computed in a sharp way (formula

(44) was only proposed in Kurganov and Lin (2007)) and therefore, the built-

in anti-diffusion term d
j+ 1

2
in (47) was equal to zero.

Remark 12. The first central-upwind scheme, introduced in Kurganov and

Tadmor (2000), was obtained by setting the symmetric bounds on the local

speeds, namely, by replacing (35) with

an	
j + 1

2

¼	max r A �q n+

j+ 1
2

� �� �
,r A �q n�

j+ 1
2

� �� �� �
: (50)

Remark 13. If the piecewise constant reconstruction (7) and the forward Euler

ODE solver are used, the central-upwind schemes from Kurganov and Petrova

(2001) and Kurganov and Tadmor (2000) reduce to the first-order Rusanov

scheme (11), (16) and (17), while the central-upwind schemes from

Kurganov et al. (2001), Kurganov and Petrova (2000) and Kurganov and

Tadmor (2002) reduce to the first-order HLL scheme (11), (18) and (19).

Remark 14. If the point values q	
j+ 1

2

� �
are computed using a reconstruction of

order r (see Section 5.3), then the semidiscrete central-upwind scheme (46)–
(49) will be (formally) rth order accurate.

Remark 15. Semidiscrete central-upwind schemes have been rigorously (using

a genuinely multidimensional approach) extended to general 2D hyperbolic

systems on a variety of different grids. We refer the reader to Kurganov and

Lin (2007), Kurganov et al. (2001), Kurganov and Petrova (2001) and

Kurganov and Tadmor (2002) for the central-upwind schemes on the Cartesian

meshes. Triangular version of the central-upwind scheme was derived in

Kurganov and Petrova (2005). Central-upwind scheme on general quadrilateral
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grids was introduced in Shirkhani et al. (2016) (see also Kurganov et al.

(2016)). Finally, central-upwind schemes on cell-vertex polygonal meshes

was developed in Beljadid et al. (2016).

Remark 16. When semidiscrete central-upwind schemes are applied to sys-

tems of balance laws

qt + f ðqÞx ¼ Sðx, t,qÞ, (51)

the numerical fluxes are still given by (47)–(49) and the only degree of free-

dom is in the approximation of cell averages of the source term,
1

Dx

Z
Cj

Sðx, t,qÞ dx, which has to be added to the RHS of (46). In order to con-

struct a reliable and robust method, one has to carefully choose an appropriate

quadrature, which respects a delicates balance between the flux and source

terms in (51). For instance, semidiscrete central-upwind schemes have been

applied to a variety of shallow water models with the source terms describing

the bottom topography, friction, and Coriolis forces. Well-balanced central-

upwind schemes were developed in, e.g., Beljadid et al. (2016), Bryson

et al. (2011), Cheng and Kurganov (2016), Chertock et al. (2015), Chertock

et al. (2016), Kurganov and Levy (2002), Kurganov and Petrova (2007) and

Shirkhani et al. (2016).
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