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Abstract We develop an adaptive artificial viscosity method for the-gdimensional
Saint-Venant system of shallow water equations. The pegosethod is a semi-
discrete finite-volume method based on an appropriate roatélux and a high-
order piecewise polynomial reconstruction. The lattertikzed without any com-
putationally expensive nonlinear limiters, which are tglly needed to guarantee
nonlinear stability of the scheme. Instead, we enforcellitiaby adding anadap-
tive artificial viscosity whose coefficients are proportional to the size of the weak
local residual. Our method is capable to preserve the “lakeest” steady state
and the positivity of water depth. We test the proposed sehema number of
benchmarks. The obtained numerical results clearly detraieghat our method is
well-balanced, positivity preserving and highly accurate

1 Introduction

We are interested in applying the adaptive artificial visggosiethod proposed in
[13] to the Saint-Venant system of shallow water equatisrisch was first intro-
duced in [25] and is still widely used to model flows in lakesgers, irrigation
channels and coastal areas. In the one-dimensional cas8atht-Venant system
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reads:

& + (h? + 3gh?), = —ghB,, @)
whereh(x,t), q(x,t) andu(x,t) = q(x,t)/h(x,t) denote the water depth, discharge
and velocity, respectivel(x) represents the bottom topography, ard the grav-
ity constant.

It is well-known that the systems (1) admits nonsmooth sohstthat may con-
tain shocks, rarefaction waves, and in the case of nonsnimitbm topography,
also contact discontinuities. Therefore, a good numeritgthod for (1) must be
nonlinearly stable since linearly stable methods may agvielrge spurious oscilla-
tions and even blow up. Finite-volume Godunov-type scheanegopular tools for
hyperbolic systems of balance laws and in particular forSaet-Venant system
(1). Godunov-type schemes form a class of projection-évmiumethods, in which
at each time step the computed solution is approximated biplaabpiecewise
polynomial function (reconstructed from the captured itz quantities, the cell
averages), which is evolved in time to the next time levebading to the integral
form of the studied system of balance laws. The nonlineailgtaof Godunov-type
schemes is typically guaranteed by enforcing a non-osmiilanature of the piece-
wise polynomial reconstruction with the help of nonlingariters. However, such
limiters may be very complicated and computationally exgden Alternatively, one
may use less computationally expensive nonlimited recoasons, while enforc-
ing the nonlinear stability by adding an artificial viscgdib the PDE system in the
regions where the computed solution is nonsmooth.

In this paper, we use a recently proposed adaptive artifigabsity method, in
which the viscosity coefficients are chosen to be propoalitmthe size of the weak
local residual (WLR). The WLR is in turn proportional b (A := maxAx, At),
whereAx andAt are small spatial and temporal scales, respectively) meenlif-
ear) shocks, while itis much smaller A7, a is close to 2) at (linear) contact waves
and tiny in the smooth parts of the solution A%) (see [3, 9, 10, 13] for details).
Therefore, the artificial viscosity vanishes as one refiheggrid and the resulting
adaptive artificial viscosity method is consistent. Moregythe rate at which the
viscosity coefficients decay, allows us to achieve the maial-g-to stabilize the
solution at shock regions without oversmearing contaataisnuities or affecting
the high resolution of smooth parts of the computed solutiorder to make the
adaptive artificial viscosity method robust, we tune thdfieidl viscosity coeffi-
cients following strategies in [6, 13]: The coefficients &irst adjusted on a very
coarse mesh and then used for the high-resolution computaii finer meshes.

It is well-known that a good numerical method for (1) shouldserve positivity
of computed values ofi as well as to accurately capture steady states and their
small perturbations (quasi-steady flows). The system (fi@dmooth steady-state
solutions satisfying

{h+m=&

2
hu = constant u? +9g(h+B) = constant
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as well as nonsmooth steady-state solutions. Both are qdilysielevant and thus
practically significant. One of the most important steathtessolutions is the fol-
lowing “lake at rest” steady state:

u=0, h+B=constant (2)

Schemes that are capable of exactly preserving such swutice called well-
balanced schemes. In the past decade, a number of welleleadaud positivity pre-
serving schemes has been introduced, see, e.g. [1, 2, 417, 85, 18, 19, 20, 21,
22, 23, 24, 27, 28].

A good numerical scheme for (1) should also preserve theigiosdf h. This is
important since ih gets negative, numerical computation may break down becaus
the eigenvalues of the flux Jacobian of (1) are \/gh. In this paper, we develop
an adaptive artificial viscosity method, which is guaradtée be both positivity
preserving and well-balanced by implementing the techesdtom [15, 20].

This paper is organized as follows. §8, we describe the adaptive artificial vis-
cosity method for the Saint-Venant system (1)s3nwe apply the adaptive artificial
viscosity method to a number of numerical examples. Theiddaresults indicate
that our method is highly accurate, robust, well-balanceti@ositivity preserving.

2 Adaptive Atrtificial Viscosity Method

In this section, we describe the adaptive artificial vistgosiethod for the Saint-
Venant system (1). For simplicity, we introduce a uniforratigl grid with the cells
lj = (xj_% ,xj+%), wherexy, = aAx, Ya. We denote the vector of conservative vari-
ables byU := (h,q)T, the flux function byf(U,B) := (g, hu? + %ghz)T, the source
term byS(U,B) := (0,—ghB,)", and rewrite (1) in the following vector form:

Ui +f(U,B)x = S(U,B). (3)
We then augment the system (3) with an adaptive artifici@losiy:
Ui +f(U,B)x = S(U,B) + C(g(U)Uy)x, 4)

whereC is a tunable positive viscosity coefficient aa(l) is a nonnegative quan-
tity, whose size is automatically adjusted depending onldbal properties ofJ.
For computed solutions, we will maleU) proportional to the WLR: This is one
of the key points in our method, which will be obtained by ditizing (4) rather
than (3).

The semi-discrete form of the adaptive artificial viscositgthod reads

d_ H 1—H. _ & ;AU- —&; AU-7
_Uj _ J+35 J +SJ+C< 1+3 ]+ J

Ax)zji% ) - B

NI

Nl
NI

AX

—
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where

denotes thgth cell averages of the computed solutidmj,i% is a linearly stable
numerical flux, and

=2) =(2) g
=57, §7~- 1 [nBax ©
lj

is an appropriate quadrature for the cell average of the g&@mrsource term. The
last term on the right hand side (RHS) of (5) is the adaptitié@al viscosity term,
in which AUJ+1 := Uj;1 — Uj and eHl = max(|E; 1| |EJ+1| |EJ+3|) where
EH% is the WLR for the first equation in (1):

AX
5476
+hj_%(t)_hj_%(t—m)}

2

[hH%(t) hy,3(t—40+4(h, 3 () —h; 1 (t—AD))

03030 +ap, 3t -A0)—q_(t-4D], (@)

where all of the participating point valuestoindq are obtained using a piecewise
polynomial reconstruction discussed below. Observe thiamdla (7), which was
derived in [13] (see also [3, 9, 10]), requires data from kb#hcurrent and previ-
ous time level. Therefore, our adaptive artificial viscpsitethod can only be used
starting from the second time step. In the first step, onedasé a high resolution
scheme stabilized using a certain nonlinear limiter.

We stress that the proposed adaptive artificial viscositthoteis not tied to any
specific numerical flux. In our numerical experiments, weehased the central-
upwind flux developed in [14] (see also [12, 16]):

+ - +
! _aHlf(U +1,BH 1) — f(U +1,BJ+%)
iz a —a*
Iz 03
aj++1 i+
2 2 + -
+ — U iU (8)
a ;—a ;| 12 I+32
1+3 ]

Whereai;L are the local one-sided speeds defined in (19) below, L&]ﬁq =
2

2
(h .0 0T
JJr J+2
at the cell interfacex = X1 obtained using a nonlimited conservative fifth-order
piecewise polynomial reconstructlon (see [13] for de}ailge note that in order to
obtain a well-balanced scheme, one needs to reconstruegthigbrium variables

w = h+ B andq rather than the conservative ones. This results in

are the right/left point values of the conservative vagalbl andq
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1
9)
1
++% - 6_ (=301 +270; + 470, — 130;, 2+ 20 3) ,
[ ( 0j_o — 1301 +470; + 270;,1 — 37, 2) ;
and the corresponding point valueshodire obtained using
W
My =Wy~ Biag (10)
Here,
B . B(Xj+%+0)+B(Xj+%—O)
i3 2 ’
which reduces t®j+% = B(x j+1 1) if the bottom topography is continuous.

Remark 1 The system of ODEs (5) should be solved using a stable andisutfiy
accurate ODE solver. In all of our numerical examples, weshesed the third-order
strong stability preserving (SSP) Runge-Kutta method ffom

Remark 2We note that all of the terms (except ) in (5), (6), (8)—(10) depend
on time, but this dependence is suppressed for notationakogence.

Remark 3In the evaluation of the WLR in (7), one has to use point vaafésandq

at the cell interfaces. Our reconstruction (9), (10) presids with two point values
of each of the variables at every cell interface. One can ngefthese values in
(7). In our numerical experiments, we have used the leftaglthat is, we have
akenh 1= h anqu% = qjjr% for all j at both the current and previous time

levels.

Remark 4.To ensure positivity of, we follow [15] and replace the bottom topog-
raphy functiorB with its continuous piecewise linear approximation

o L XXy
500 =8y 3+ (8,3 -8,3) $

1 < X<X
1=3

TN CE)

Nl

j,

so that we set

1 /5 i+3 " Pi-3
B;:=B B(x)dx= —2_——-2,
j =Bl = AX|/ (dx= 2
]

Notice that this affects the numerical solution and its aacy in dry = 0) and
almost dry b ~ 0) areas only, where the studied Saint-Venant system ismats
curate to begin with. Replacirgwith B also reduces the formal order of the source
term quadrature, which will be describedgia.1 below.
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2.1 Source Term Quadrature

The construction of a well-balanced scheme hinges on theiaespecial well-
balanced quadrature for the source téjnin (6). We use the fourth-order Simpson-
type well-balanced quadrature proposed in [20]. In the casiee piecewise linear
bottom topograph¥ (11), this quadrature reduces to

B.,1—
_-2>~_9<— ht )M
SEES s (s tahi+h . (12)
Here,hj is the point value oh at thejth cell center obtained using the same non-
limited conservative fifth-order piecewise polynomiala@astruction forw, which
was used in (9) to obtain the endpoint values in jirecell:

1

hj = m(g\l_vj',z —116W; 1+ 2134w — 116Wj 1+ 9V_Vj+2) —B;j. (13)

We would like to point out that the artificial viscosity tei@{e(U)Uy)y in the
second equation of (4) does not affect the well-balance@gsty of the scheme
because = 0 in the “lake at rest” stead state.

2.2 Correction of the Reconstructed Point Values

Recall that the designed scheme should preserve the ftysitithe water depti.
Notice that the positivity ohil, obtained in (10), is not guaranteed unlm%;L >
2 2
BH%. Therefore, the reconstructed point value]‘g;rl may need to be corrected. To
2
do so, we first consider the quantity

R 1 +
hy=hy = 3 (). (14)
and notice that if the solution is smooth and celk not (almost) dry, theﬁj >
0. Indeed, using the Taylor expansion, one may obtain thathi® exact smooth
solution formula (14) gives

1 1

~Zhix;.1)

: L (%) h,8) + 0 (8%,

_ ﬂ_(
which is nonnegative providetx;,t) is not too small andy(xj,t) is not too large.

If ﬂj < 0 atsome cell, then the positivity proof if§2.4 would fail and to ensure pos-
itivity we replace the nonlimited fifth-order reconstruxtiof w with the nonlimited
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second-order Fromm'’s reconstruction (see, e.g., [18]tkvbives

1 _ _ _ _ o
W;r% = Z(Wj—|—4Wj+1—Wj+2), WH% = 4(—Wj_1—|—4Wj—|—Wj+1). (15)

For the piecewise linear reconstructibn = h;j/6, and it is obviously positive pro-
vided h; > 0. However, the values dfi; calculated from either (9) or (15) may

2
be negative. If this occurs, we follow the approach from [dA5dl make another cor-
rection: We replace thgth piece of the reconstruction with a linear piece, which
is adjusted to the corresponding linear piecaBaind has the following endpoint
values:

TRV - +
if Wj+% <Bj+%, thentakew. %_BH%’ Wji%—ZW B+%, 16
= 2wW; — B, 1 YA B

if wh , <B, 1, thentakew B 1.
=3 1=3 J =3 2

Wiy

N

This correction procedure guarantees that the resulticgnsgruction ofv will re-

main conservative and will stay above the piecewise linppr@aimant of the bot-

tom topographyB. Therefore, the point valuds]'zrl, computed from (10), will be
2

nonnegative.

2.3 Desingularization

Even though both the cell averaggsand point valuekli 1 are nonnegative, they
may be very small or even zero, which may be troublesome outaing the veloc-
ities uJ . To overcome this difficulty, we follow [15] and desingulzgithe division

ui 1 /hi by replacing it with

2ht gt
u;.l: L= \/— J+%qj+% (17)
I+3 \/(hT+%)4+ma)‘((hT+%)4,5)

whered is a small positive number chosen in our numerical experisenbe be-
tween(Ax)* and (Ax)?. For consistency of the resulting scheme, we then use the
recalculated values cnlj'i , to recompute the discharggst the cell interfaces:

2

+ .t
A,y =h U (18)

I
c

Equipped with the point values of bollﬁ 3 andu Ty we can now calculate the

one-sided local speeds of propagation, WhICh are obtamm@ the eigenvalues of
the Jacobian as follows:
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aj+ 1_max{uj+ ,+ gh+1, 9h+1= }v

+3

a  ,=minsu" , — /gh" ;,u” ,—./gh” ;,05.
i+3 { s VI e TV Iy

(19)

2.4 Positivity Preserving Property

In this section, we prove the positivity preserving propeitthe proposed adaptive
artificial viscosity method. Notice that the technique usegrove the positivity
of the central-upwind scheme in [11, 15] cannot be direqblyli?d to our method
since for a nonlimited conservative fifth-order piecewisé/pomial reconstruction

However, the correction procedure describedar? allows one to easily prove the
main result of this section.

Theorem 1.Consider the system (4) and the adaptive artificial visgosiethod
(5)—(18). Assume that the system of ODEs (5) is solved bgnivarid Euler method,
and that the solution at time levekt t" satis;fieshrj1 > O for all j. Then at the next

time Ievelﬁrj1+l > 0 for all j, provided that

AX
C mjax[eH% +ej_%]

AX . 1
At < —min<{ — 20
< - ming ~ ; (20)

- toa
where a= mjax{ max{aH%, aH%}}.

Proof. First, we apply the forward Euler method to (5) and obtain

—n+1 n =N

=n 1 CA - o —
Ayt =R A (M —Hj(_)%]+— & 3 (Ma - —g (A —F_p)], @)

J+2 AX[
whereA = At/Ax. We now use (14) to obtain
—n_ 1—n 3—n_ _ + 3’\n
Ay = 2B+ 2h = 2 +4(hj+%+h })+ 30 (22)

Substituting the first component of (8), (18) and (22) intb)(sults in
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- at . _ut -
=+l 39 1 a -1 Yl
A =S+ | +Aa 2 2 | |ht
a4 “3\af,—a )| i3
L I=3 =3/ ]
- A Z
| e () e
4 "ivi\ar ,—a , || 143
L J+3 +3/ ] (23)
rar 2~ 2|h ,-Aa’ : 2 | h'
* slar,—a ;) i3 itz \la,—a , | i+3
=3 =3 J+2 J+35
CA i i 1 CA i
Sleare ) -GG ]

Next, we argue as in [15] claiming that provided the CFL ctindi(20) is satisfied,
ﬁ?“ in (23) is a linear combination of nonnegative quantitil?ﬂjs hi%, ﬁ?ﬂ:l and
ﬁn) with nonnegative coefficients. This completes the prodheftheorem. O
Remark 5Notice that since the maximal value ef 1 is at most proportional to

Ax, the time step restriction (20) is not severe smnes still proportional toAx
and not to(Ax)?.

Remark 6 The positivity proof can be directly extended from the fordv&uler to
the SSP ODE solvers from [5].

3 Numerical Examples

In this section, we demonstrate the performance of our adaaitificial viscosity
(AAV) method on a number of test problems. All of the referersolutions are
computed using the second-order central-upwind schenfetiadt piecewise linear
minmod reconstruction ([15]) on a much finer mesh with= 1/6400.

Example 1 — Small Perturbation of a Steady-State Solution

In this example taken from LeVeque [17], we numerically sollie Saint-Venant
system (1) withg = 1 and the non-flat bottom topography containing one hump:

) —0. 4 <x<0.
B(x) = 0.25(cog10m(x— 0.5)) + 1), 047x.7 0.6, (24)
0, otherwise
The initial data is the perturbed stationary solution:
W(x,0)=1+0, u(x0)=0,
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where the perturbation constamis non-zero on the intervé0.1,0.2]. We compare
the performance of the AAV method with different viscosityedficientC. The ob-
tained solutions are presented in Figures 1 and 2, respctivhe AAV constants
are taken a€ = 10 andC = 70. The obtained results are of a comparable quality:
The achieved resolution is quite sharp and the AAV methoaigdap sensitive to
the selection of the AAV consta@tfor both large & = 10-2) and small & = 10~)
perturbations.

h+B

1.006

C=10

1.005

1.004

1.003

1.002

1.001

0.999
0

h+B

C=70

1.006

1.005

1.004

1.003

1.002

1.001

0.999
0

Fig. 1: Example 1. 0 = 102, water surface h+ B at time t = 0.7 computed by the AAV
method using the uniform mesh with Ax=1/100. The solid line is the reference solution.

h+B

Example 2 — Transcritical Flow

1.000006

1.000005

1.000004

1.000003

1.000002

1.000001

1

0.999999
0

Cc=10

Fig. 2: Example 1. The same as Figure 1 but with o = 1072,

-

h+B

1.000006

1.000005

1.000004

1.000003

1.000002

1.000001

1

0.999999
0

C=70

[N

This example is also taken from [17]. We numerically sohe$aint-Venant system
with g= 1, the same bottom topography function (24) and the follgyimitial data:
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w=1 u=0.3.

In this example, the flow is transcritical, which means theugle number F&
u/+/gh can pass through 1 and thus one of the eigenvaldeg/gh passes through
0. In such case, the steady-state solution contains arsayishock. The numerical
solution computed by the AAV method wi@= 20 is presented in Figure 3. As one
can clearly see, the stationary shock is very well resolved.

1.2

h+B

0.4f 1

0.2 J

Fig. 3:Example 2. Water surface h+ B at time t = 1.8 computed by the AAV method using
the uniform mesh with Ax=1/100 The solid line is the reference solution.

Example 3 — Dam-Break Problem over the Flat Bottom

In this example, we consider the dam-break problem for thetS&nant system
with g = 1 over a flat bottomB = 0) and subject to the following Riemann initial
data:

(3,007, x<0,

(h, )" (x,0) = {(1,0)& x> 0.

The solution consisting of a rarefaction wave and a shoclevimeomputed by the
AAV method withC = 8. The obtained water depthis presented in Figure 4. As
one can clearly see, both waves are sharply and accurassived by the AAV
method.
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Fig. 4: Example 3. Water depth h at times t = 0.5 and t = 2 computed by the AAV method
using the uniform mesh with Ax = 0.025 The solid line is the reference solution.

Example 4 — Dam-Break Problem over a Rectangular Bump

In this example taken from [26], we numerically solve the dameak problem for
the Saint-Venant system with= 9.812 over a rectangular bump. The bottom to-
pography is the following discontinuous function:

(8, if [x—750 < 1875,
BO) = {O, otherwise,

and the initial data are

(20,0)7, x< 750,

(W) (x,0) = {(15, 07, x> 750

The water depthn is initially discontinuous ak = 5625 andx = 937.5, which are
the two locations of the discontinuous bottom edges. At timel7, the waves
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reach those two edges and after this, the system genera@alsgaves including
transmitted, reflected and standing waves.

In Figure 5, we show the solution computed by the AAV methothwd = 10
at small time ( = 15), that is, before any wave interactions. The solutiomshio
Figure 6 is at large timet (= 55), that is, after several wave interactions. At both
times, the achieved resolution is very high and the obtasodation is almost non-
oscillatory.

t=15 t=15
22
20 -
18 ‘
16 s ——
oM e ]
2120 initial h+B T
@ 10 g z
< 8
6
4
2
0 14 ‘ ‘
0 500 1000 1500 0 500 1000 1500

Fig. 5:Example 4. Water surface h+ B at small time (t = 15) computed by the AAV method
using the uniform mesh. Left: Ax= 2.5, the water surface is plotted together with the initial
condition and the bottom topography; Right: Ax=2.5and Ax=0.25.

=55 t=55
22
20 —— — —— — — ]
18 ! 1
16 ]
o 14 + h =
g 12 777.J.“t'.3|h+8 ©
E 10 gll 1al E
< 8
6
4
2
0 14 . .
0 500 1000 1500 0 500 1000 1500
X X

Fig. 6: Example 4. The same as Figure 5 but at large time (t = 55).
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Example 5 — Saint-Venant System with Friction and Discontious
Bottom

In this example taken from [15], we numerically solve thenBdlenant system with
an additional friction term-k (h)u on the RHS. The system then takes the form

ht + (hu)x = 07 (25)
(hu); + (ht? + 3g?) = —ghB — Kk (h)u.

We takeg = 1, the friction coefficient (h) = 0.001(1+ 10h)~%, and the bottom
topography

1, x <0,
cog(x), 0<x<0.4,
cog(7x) +0.25(cog 1071(x — 0.5)) + 1), 0.4<x<0.5,
B(x) = { 0.5c0¢(7mx) + 0.25(cog10mm(x — 0.5)) +1), 0.5<x< 0.6,

0.5coé(mnx), 06<x<1,
0.25sirf(27mm(x— 1)) 1<x< 15
0, x> 1.5,

which has a discontinuity at= 1. The initial data are

(00T (,0) = {(1.4— B(x),0)T, —0.25<x<0,

(0,0), 0<x<175.
This setting corresponds to the situation when the secotitedhree dams, initially
located atx = —0.25, 0 and 1.75, breaks down at tirne- 0, the water propagates
into the initially dry ared0,1.75), and a stationary steady state is achieved after a
certain time. We apply the AAV method to this problem. Thd egkrage of the
frictional term in (25) is discretized using Simpson’s rakefollows:

uj i+3

1 u
+_.
1+10h; 6 14100, '
2

1 “,-+ 1 2
dx=0001|=. — 12 4%
6 T+1on T3

-2

1 [0.001u

E(I 1+ 10h
i

Here,u; is the point value at thgth cell center, which can be calculated using the
desingularization similar to (17):

V2hj g
V() +max((h))%, (4x)?)’

where the point valulj is given by (13) and; is obtained in a similar way:

uj = (26)
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1

Qj = m(gquz— 11601 + 21349, — 1167, 1 + 97 2) -

Notice that this friction term affects neither the well-bated (sincel = 0 at the
“lake at rest” steady state) nor the positivity preservisigde the first equation has
not been modified) properties of the proposed AAV method.

In Figures 7 and 8, we plot time snapshots of the solution adethby the AAV
method withC = 20. One can clearly see the dynamics of the flow as the water
moves from the regiof—0.25,0] into the initially dry aredg0,1.75] and gradually
settles down to a stationary steady state. These resulrdtrate that the proposed
AAV method is both well-balanced and positivity preserving

Fig. 7:Example 5. Water surface h+ B and bottom function B at timest =0, 0.5, 1, 2 and
3 computed by the AAV method using the uniform mesh with Ax = 1/100.
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Fig. 8: Example 5. The same as Figure 7 but at times t = 4, 5, 6, 10 and 100. At time
t = 100 when the stationary steady state is practically achieved, Ax = 1/200
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