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New Discontinuous Galerkin Methods for the Keller-Segel
Chemotaxis Model

Yekaterina Epshteyn* and Alexander Kurganov!

Abstract

We develop a family of new interior penalty discontinuous Galerkin methods for the
Keller-Segel chemotaxis model. This model is described by a system of two nonlinear PDEs:
a convection-diffusion equation for the cell density coupled with a reaction-diffusion equa-
tion for the chemoattractant concentration. It has been recently shown that the convective
part of this system is of a mixed hyperbolic-elliptic type, which may cause severe instabil-
ities when the studied system is solved by straightforward numerical methods. Therefore,
the first step in the derivation of our new methods is made by introducing the new variable
for the gradient of the chemoattractant concentration and by reformulating the original
Keller-Segel model in the form of a convection-diffusion-reaction system with a hyperbolic
convective part. We then design interior penalty discontinuous Galerkin methods for the
rewritten Keller-Segel system. Our methods employ the central-upwind numerical fluxes,
originally developed in the context of finite-volume methods for hyperbolic systems of con-
servation laws.

In this paper, we consider Cartesian grids and prove error estimates for the proposed
high-order discontinuous Galerkin methods. Our proof is valid for pre-blow-up times since
we assume boundedness of the exact solution. We also show that the blow-up time of the
exact solution is bounded from above by the blow-up time of our numerical solution. In
the numerical tests presented below, we demonstrate that the obtained numerical solutions
have no negative values and are oscillation-free, even though no slope limiting technique
has been implemented.

AMS subject classification: 656M60, 66M12, 66M15, 92C17, 35K57

Key words: Keller-Segel chemotaxis model, convection-diffusion-reaction systems, discontinu-
ous Galerkin methods, NIPG, IIPG, and SIPG methods, Cartesian meshes.

1 Introduction

The goal of this work is to design new Discontinuous Galerkin (DG) methods for the two-
dimensional (2-D) Keller-Segel chemotaxis model, [13, 28, 29, 30, 35, 37]. The DG methods have
recently become increasingly popular thanks to their attractive features such as:

e local, element-wise mass conservation;
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e flexibility to use high-order polynomial and non-polynomial basis functions;
e ability to easily increase the order of approximation on each mesh element independently;
e ability to achieve almost exponential convergence rate when smooth solutions are captured on
appropriate meshes;
e block diagonal mass matrices, which are of great computational advantage if an explicit time
integration is used;
e suitability for parallel computations due to (relatively) local data communications;
e applicability to problems with discontinuous coefficients and/or solutions;
e The DG methods have been successfully applied to a wide variety of problems ranging from
the solid mechanics to the fluid mechanics (see, e.g., [3, 7, 14, 15, 17, 20, 22, 40] and references
therein).

In this paper, we consider the most common formulation of the Keller-Segel system [13], which
can be written in the dimensionless form as

pi+ V- (xpVe) = Ap,
{Ct:AC—C—l—p? (l’,y)EQ,t>07 (].].)

subject to the Neumann boundary conditions:
Vp-n=Ve-n=0, (x,y)€ .

Here, p(x,y,t) is the cell density, c(x,y,t) is the chemoattractant concentration, x is a chemo-
tactic sensitivity constant, € is a bounded domain in R?, 9 is its boundary, and n is a unit
normal vector.

It is well-known that solutions of this system may blow up in finite time, see, e.g., [26, 27] and
references therein. This blow-up represents a mathematical description of a cell concentration
phenomenon that occurs in real biological systems, see, e.g., [1, 8, 10, 11, 16, 38].

Capturing blowing up solutions numerically is a challenging problem. A finite-volume, [21],
and a finite-element, [34], methods have been proposed for a simpler version of the Keller-Segel
model,

pe+ V- (xpVe) = Ap,
Ac—c+p=0,

in which the equation for concentration ¢ has been replaced by an elliptic equation using an
assumption that the chemoattractant concentration ¢ changes over much smaller time scales
than the density p. A fractional step numerical method for a fully time-dependent chemotaxis
system from [41] has been proposed in [42]. However, the operator splitting approach may not
be applicable when a convective part of the chemotaxis system is not hyperbolic, which is a
generic situation for the original Keller-Segel model as it was shown in [12], where the finite-
volume Godunov-type central-upwind scheme was derived for (1.1) and extended to some other
chemotaxis and haptotaxis models.

The starting point in the derivation of the central-upwind scheme in [12] was rewriting the
original system (1.1) in an equivalent form, in which the concentration equation is replaced with
the corresponding equation for the gradient of ¢:

{ pi + V- (xpw) = Ap,

Wt_vp:AW—W7 WE(UaU)3:VC.



DG METHODS FOR THE KELLER-SEGEL SYSTEM 3

This form can be considered as a convection-diffusion-reaction system
U, +f(U), +g(U), = AU +r(U), (1.2)

where U := (p,u,v)T, £(U) := (xpu, —p,0)", g(U) := (xpv,0, —p)T, and r(U) := (0, —u, —v)7.
The system (1.2) is an appropriate form of the chemotaxis system if one wants to solve it
numerically by a finite-volume method. Even though the convective part of the system (1.2) is
not hyperbolic, some stability of the resulting central-upwind scheme was ensured by proving its
positivity preserving property, see [12].

A major disadvantage of the system (1.2) is a mixed type of its convective part. When a
high-order numerical method is applied to (1.2), a switch from a hyperbolic region to an elliptic
one may cause severe instabilities in the numerical solution since the propagation speeds in the
elliptic region are infinite. Therefore, in order to develop high-order DG methods for (1.1), we
rewrite it in a different form, which is suitable for DG settings:

pr+ (xpu)z + (xpv)y = Ap, (1.3)
¢ =Ac—c+p, (1.4)
U= Cy, (1.5)
V= ¢y, (1.6)
where the new unknowns p, ¢, u, v satisfy the following boundary conditions:
Vp-n=Ve-n=(u,v)’ -n=0, (r,y) €. (1.7)

The new system (1.3)—(1.6) may also be considered as a system of convection-diffusion-reaction
equations

kQ:+F(Q). + G(Q)y, = kFAQ + R(Q), (1.8)

where Q := (p,c,u,v)T, the fluxes are F(Q) := (xpu,0, —¢,0)”7 and G(Q) := (xpv,0,0, —c)7,
the reaction term is R(Q) := (0, p — ¢, —u, —v), the constant k = 1 in the first two equations in
(1.8), and k£ = 0 in the third and the fourth equations there. As we show in §3, the convective
part of the system (1.8) is hyperbolic.

In this paper, we develop a family of high-order DG methods for the system (1.8). The proposed
methods are based on three primal DG methods: the Nonsymmetric Interior Penalty Galerkin
(NIPG), the Symmetric Interior Penalty Galerkin (SIPG), and the Incomplete Interior Penalty
Galerkin (ITPG) methods, [4, 18, 19, 39]. The numerical fluxes in the proposed DG methods are
the fluxes developed for the semidiscrete finite-volume central-upwind schemes in [32] (see also
[31, 33] and references therein). These schemes belong to the family of non-oscillatory central
schemes, which are highly accurate and efficient methods applicable to general multidimensional
systems of conservation laws and related problems. Like other central fluxes, the central-upwind
ones are obtained without using (approximate) Riemann problem solver, which is unavailable for
the system under consideration. At the same time, a certain upwinding information—one-sided
speeds of propagation—is incorporated into the central-upwind fluxes.

We consider Cartesian grids and prove the error estimates for the proposed high-order DG
methods under the assumption of boundedness of the exact solution. We also show that the
blow-up time of the exact solution is bounded from above by the blow-up time of the solution of
our DG methods. In numerical tests presented in §6, we demonstrate that the obtained numerical
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solutions have no negative values and are oscillation-free, even though no slope limiting technique
has been implemented. We also demonstrate a high order of numerical convergence, achieved
even when the final computational time gets close to the blowup time and the spiky structure of
the solution is well developed.

The paper is organized as follows. In §2, we introduce our notations and assumptions, and
state some standard results. The new DG methods are presented in §3. The consistency and
error analysis of the proposed methods are established in Sections 4 and 5 (some proof details
are postponed to Appendix A). Finally, in §6, we perform several numerical experiments.

2 Assumptions, Notations, and Standard Results

We denote by &, a nondegenerate quasi-uniform rectangular subdivision of the domain 2 (the
quasi-uniformity requirement will only be used in §5 for establishing the rate of convergence with
respect to the polynomials degree). The maximum diameter over all mesh elements is denoted
by h and the set of the interior edges is denoted by I',. To each edge e in I'y, we associate a
unit normal vector n, = (n,,n,). We assume that n. is directed from the element E* to E?,
where E' denotes a certain element and E? denotes an element that has a common edge with
the element E' and a larger index (this simplified element notation will be used throughout the
paper). For a boundary edge, n, is chosen so that it coincides with the outward normal.
The discrete space of discontinuous piecewise polynomials of degree r is denoted by

th gh {w€L2(Q) IVEEgh,w‘EGPT(E)},

where P,.(E) is a space of polynomials of degree r over the element E. For any function w € W, ,
we denote the jump and average operators over a given edge e by [w] and {w}, respectively:

w? {w} = 0.5w” +05we ,

e

;o {w) =l

for an interior edge e = OE' NOE?, [w] :== wF —
for a boundary edge e = OE' N9,  [w] := w”’

where w? " and wf2 are the corresponding polynomial approximations from the elements E! and

E?. We also recall that the following identity between the jump and the average operators is
satisfied:

[wiws] = {w }wa] + {ws }w:]. (2.1)

For the finite-element subdivision &, we define the broken Sobolev space
H*(&,) ={w e L*(Q) s w|y € H(E?),j=1,...,Ny}
with the norms

llwllfon = (Z HwIIS,E>

Ecg&y,

[N

1
2
and |[|w|[]s0 = (Z lelig> , $>0,

Eecg&y,

where || - ||s,z denotes the Sobolev s-norm over the element E.
We now recall some well-known facts that will be used in the error analysis in §5. First, let us
state some approximations properties and inequalities for the finite-element space.
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Lemma 2.1 (hp Approximation, [5, 6]) Let E € &, and ¢ € H*(E), s > 0. Then there
exist a positive constant C independent of 1,7, and h, and a sequence P! € P.(E), r =1,2,...,
such that for any q € [0, s]

<C

- .

sps  H=min(r+1,s). (2.2)

Lemma 2.2 (Trace Inequalities, [2]) Let £ € &,. Then for the trace operators vy and 71,
there exists a constant C; independent of h such that

Ve H(E), 5> 1, mewscw%(mmE+Mme@, (23)

Vwe HYE), 522 |nwly, < ChE (IVelyp+aIV30ly ),  (24)
where e is an edge of the element E.

Lemma 2.3 ([39]) Let E be a mesh element with an edge e. Then there is a constant C;
independent of h and r such that

Yw € P(E), [yowly, < Coh™2rlfwl, - (2.5)

Lemma 2.4 ([4, 9]) There exists a constant C' independent of h and r such that

Yw € Wen(&n),  lwllgg < C (Z IVwllgs+ ||| ||o@) :
Ee&y, eGFh

where |e| denotes the measure of e.

Lemma 2.5 (Inverse Inequalities) Let £ € &, and w € P,(E). Then there ezists a constant
C independent of h and r such that

[l e iy < CRT ]l s (2.6)
||w||1,E < Ch_lT”wHo,E'

We also recall the following form of Gronwall’s lemma:

Lemma 2.6 (Gronwall) Let ¢, v, and ¢ be continuous nonnegatwe functzons deﬁned on the
interval a < t <'b, and the function ¢ is nondecreasing. If o(t) + (1) t) + f s)ds for all

t € [a,b], then o(t) + (1) < ep(t).

In the analysis below we also make the following assumptions:

e () is a rectangular domain with the boundary 02 = 0Qe U OQhor, Where 0Qye, and 0o,
denote the vertical and horizontal pieces of the boundary 02, respectively. We also split the set
if interior edges, I';, into two sets of vertical, I'}", and horizontal, T8", edges, respectively;

e The degree of basis polynomials is 7 > 2 and the maximum diameter of the elements is A < 1
(the latter assumption is only needed for simplification of the error analysis).
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3 Description of the Numerical Scheme

We consider the Keller-Segel system (1.8). First, notice that the Jacobians of F and G are

xu 0 xp O xv 0 0 xp
OF 0O 0 0 0 oG 0 0 0 0
— = and — = ,
0Q 0 -1 0 0 9Q 0 0 0 0
0O 0 0 0 0 -1.0 0
and their eigenvalues are
Mo=yu, NN =X =)F=0 and A\ =yu, A§=2§=)F=0, (3.1)

respectively. Hence, the convective part of (1.8) is hyperbolic. We now design semidiscrete
interior penalty Galerkin methods for this system.

We assume that at any time level ¢ € [0,7] the solution, (p,c,u,v)? is approximated by
(discontinuous) piecewise polynomials of the corresponding degrees r,, ¢, r,,, and r,,, which satisfy
the following relation:

I'maz <a, Tmag = MAX{T), e, Ty Ty by T = min{r,, re, 7y, 7y}, (3.2)

Tmin

where a is a constant independent of r,, 7., 7,, and 7.
Our new DG methods are formulated as follows. Find a continuous in time solution

(PP (), PC(, 1), uPC (1), 00 (1) € WY 3 X W X W X W,

which satisfies the following weak formulation of the chemotaxis system (1.3)—(1.6):

/ w3y / DY / (Vo mo}wr] 42y / {Vw - n.}[p")

Ec&y, E ecl’y, e ecl’y, e
2
RO LS TAED S RS TERD Sl (VI R
ecl'y, e EeghE EEF;;H e
DI R T S [V R (33
Ecg&y, E eergor -
/CPGwC + Z /VCDGVwC - Z /{VCDG ‘n,Hw| + ¢ Z /{Vwc -0, }[cPC]
Q EeghE eel'y e eel’'y e
2
+o. Z % /[CDG][wC] + /cDGwc — /pDGwC =0, (3.4)
e€ln © 1% Q Q
/uDGw“+ Z /CDG(w“)x + Z /(—CDG)an[w“]
A E€€y, 3 ecTyer ¥

- [Fnrra Y [ -0 5)

e€0Qer ¥, €T, U0 ver
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/ DG v 4 Z/ DG (4 /(_CDG)Zny[wv]

QO Eegh E eel“hor
2
DI E PR S [ A (3.6)
e€0Qhor e e€l', U0 or ‘6| e

and the initial conditions:

e

Here, (w”,w® w", w’) € meh X W X W X W;Jv,h are the test functions, o,, 0., 0, and o,
are real positive penalty parameters. The parameter ¢ is equal to either —1,0, or 1: these values
of € correspond to the SIPG, ITPG, or NIPG method, respectively.

To approximate the convective terms in (3.3) and (3.5)—(3.6), we use the central-upwind fluxes
from [32]:

>
= [

Q
(o4
w)]
R
v@
SN—
S
(4
Il
\D
S
=
S
(4
—
w2
=

[ PCuPS) — O“t(XpDGUD?Out ain(xpDGuDG) _ ai‘z“ta‘;m[ pa|
(XpDG DG)* _ bout (XPDG DG) an(XpDG DG)E B boutbin. [pDG]’
bout _ bm bout _ bln (38)
DG aout(cDG)eEl _ ain(cDG)§2 a®t gin .
(=) =— qout — gin o gout — am[ I
. bout(CDG)fl o bin(CDG>eE? pout pin b
(= o =— pout _ pin ~ pout _ bin[ J

Here, a®", a'®, b°**, and b™ are the one-sided local speeds in the z- and y- directions. Since the
convective part of the system (1.3)—(1.6) is hyperbolic these speeds can be estimated using the
largest and the smallest eigenvalues of the Jacobian % and 28 o (see (3.1)):

out

= max ((XUDG)fla (xuP®)E* 0) , @ =min <(XUDG)517 (xuP)E, 0) :

a >,
1 2 : . 1 5 (39)
e = mae (0P, (P, 0) b = min (0P, (P, 0)
Remark. If a®"® — a'™ = 0 at a certain element edge e, we set
DG, DG DG, DG\ E? DG, DG DG, DG\ E?
DG, DGyx _ (XP )+ (xp )e DG, DGy _ (XP )E + (xp )e
(xp™"u™)" = 5 , (xp o) = 5 ,
1 2 1 2
(—cPGyr — ( PO+ (P9)7 (=% = _(CDG)E + (P92 7
2 2
there. Notice that in any case, the following inequalities,
out __,in bout _bin
a <1, a <1, and — <1, (3.10)

qout — gin — afut — gin — ’ pout _ pin —

bout _ bln -
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are satisfied.
From now on we will assume that a®** —a™ > 0 and v°** —b™ > 0 throughout the computational
domain.

4 Consistency of the Numerical Scheme

In this section, we show that the proposed DG methods (3.3)—(3.6) are strongly consistent with
the Keller-Segel system (1.3)—(1.6).

Lemma 4.1 If the solution of (1.3)—(1.6) is sufficiently reqular, namely, if (p,c) € H'([0,T]) N
H?(&) and (u,v) € L2([0,T]) N H?(E), then it satisfies the formulation (3.3)—(3.6).

Proof: We first multiply equation (1.3) by w” € wah and integrate by parts on one element E
to obtain

/ptw’)—l—/Vprp—/Vp-newp—/Xpu(wp)zjt/xpunzwp—/va(w”)y+/xpvnyw’) = 0.
E E oF E oF E

OF
(4.1)
Notice that continuity of p and u implies that at the edge e, pF* = p=” and (ypu)Z" = (xpu)F’.
Therefore, [p] = 0 and

1 1 1 2 1 aout o ain .
{Peou} = 500u)! + 500 = (o)l = 5 (xpu)?
out in out E! in E2
_ a E! . a E? _ a (Xpu)e —a (Xpu>e _ *
o aeut — ain (Xpu>6 qout — CLm (Xpu>e - qout — CLm == (Xpu) .

Summing now equation (4.1) over all elements E € &, using the jump-average identity (2.1),

adding the penalty terms > . [ {Vw” - n.}[p] and 0, 3" 1 r—j [.[p][w*], and using the Neu-
mann boundary conditions (1.7), we obtain that the solution of the system (1.3)—(1.6) satisfies
equation (3.3). A similar procedure can be applied to show that the solution of (1.3)—(1.6)
satisfies equations (3.4)—(3.6) as well. This concludes the consistency proof. O

5 Error Analysis

In this section, we prove the existence and show the convergence of the numerical solution using
the Schauder’s fixed point theorem, [24].

In the analysis below we will assume that the exact solution of the system (1.3)—(1.6) is
sufficiently regular for ¢t < T', where T is a pre-blow-up time. In particular we will assume that

(p,c,u,v) € H([0,T]) N H*?(Q), s1>3/2, s2>3, (5.1)
which is needed for the h-analysis (convergence rate with respect to the mesh size), or

(p,c,u,v) € H*([0,T]) N H*?(Q), s1>3/2, s2>05, (5.2)
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which is needed for the r-analysis (convergence rate with respect to the polynomial degree).
Notice that these assumptions are reasonable since classical solutions of the Keller-Segel system
(1.1) are regular (before the blow-up time) provided the initial data are sufficiently smooth, see
[26] and references therein.

We denote by p, ¢, u, and v the piecewise polynomial interpolants of the exact solution com-
ponents p, ¢, u, and v of the Keller-Segel system (1.3)—(1.6) and assume that these interpolants
satisfy the approximation property (2.2). We then use the idea similar to [36] and define the
following subset of the broken Sobolev space:

_ { (60,6°,6", 6") € L0, T]) N L=(0,T]) W, x WS x Wi, x W,

T

sup [0 =730+ [ (19 = Alla+ 3 2 = 71

t€[0,T)] 4 el

h2 min(rp,+1,s,)—2 h2 min(re+1,s:)—2 2 min (ru+1,su)—2 h2 min(ry+1,8,)—2
<C
Tzsp—4 + Tzsc_4 + 7’58“_4 + 7’38”_4 ’
T
c 2
sup 107~ 7lia+ [ (196~ alEa+ 3 e~ N2,
t€[0,T] 4 el
h2 min(rp+1,s,)—2 h2 min(re+1,s:)—2 h 2 min (ru+1,8u)—2 h2 min(ry+1,5)—2
<C + +
Tgsp_4 7’380_4 7"58“_4 7"12)8“_4 )

~ 1 1 1 1
sup [0 —ullgq < Ch (T_+r_+_+_)’

[0 T] P c Ty Ty

(!\¢“ 0+ Z D)

o —

eGFh
h2 min(r,+1,s,)—2 h2 min(re+1,s:)—2 h2 min(ry+1,84)—2 h2 min(ry+1,5,)—2
<, < + + + )
- 2sp—4 2sc—4 25y —4 25, —4 ’
Tp P TC c ru u TU v

~ 1 1 1 1
sup [|¢" —vl[gq < Ch (T_+T_+_+_)7

(0,77 p c Ty Ty

(lle" =50+ > = ‘H -, )

EEFh

St~

h2 min(r,+1,s,)—2 h2 min(re+1,s:)—2 h2 min(ry+1,84)—2 h2 min(ry+1,5,)—2
<, < — + + + ) }

p fragsc—él 7“35“_4 7»12)51)—4

where C,C,, C,, C,, and C, are positive constants (which will be defined later) independent of
h and the polynomial degrees (r,,r.,7y,7,), and the parameters s,, s., s,, and s, denote the
regularity of the corresponding components of the exact solution. Clearly the subset S is a
closed convex subset of the broken Sobolev space and it is not empty since it contains the

element (p, ¢, w,v). We first show that the functions in S are bounded.
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Lemma 5.1 For any (¢°, ¢°, ¢", ¢") € S, there exist positive constants M,, M., M,,, and M,
independent of h,r,,7rc, Ty, and 1y, such that

sup (|07 < My,  sup [|¢° oo < Me, sup [|9°] oo < My, sup |97 < M. (5.3)
te[0,7 te[0,7T te[0,7]

t€[0,T]

Proof: From the definition of the subset S, we have

h2min(rp+l,sp)—2 h2min(rc+1,sc)—2 h2min(ru+l,su)—2 h2min(rv+l,sv)—2
sup |[¢” _PHOQ <G, ( 25,4 + + + )
- 25.—4 254 —4 25y —4
t€[0,T] T, ° rEse r2su r2sv
Hence,

h
sup 67 = o < M-

t€[0,T] min

Using the inverse inequality (2.6), we obtain

Sup ’|¢p_p||ooQ<erph bsup |¢f —PHOQ Lmaz g < M.
t€[0,T] t€[0,T) T'min

This estimate implies that

sup [[¢°] .0 < M+Sup 1]l o005
te[0,T] (0,7

which, together with the hp approximation property (see Lemma 2.1), yields the first bound in
(5.3). The remaining three estimates in (5.3) are obtained in a similar manner. O

We now define the solution operator A on S as follows:

V(¢F, 6% 9", ¢") €5, A9, ¢° 6", ¢") = (¢, d1, 9L, SL),

... .- ,0 ,0 ,0 ;0
where the initial conditions are (¢}", ¢, 67", ¢7") = (p°, %, u?,0°),

¢ € Wfp,h,t = H*([0,T]) N Wfp,hv ¢ € Wrpe = H([0,T) Wy ), s> 3/2
of € Wi e = L[0T N L¥([0,T) AW 4y 0% € W4 = L2([0, T)) N L¥([0,T]) "W,

and the functions

are such that

/¢” ot + - [ Ve ve - /{wL n}fuw)+= 3 {90’ n}iof)

Ee&y h eel’y, eel’y, e
_P 4 P U u
+%Z |6‘/[¢L][wp E;/be " (w") +e§m/x¢ &) ng[w’]
- > / X (W), + Y / X018 )y =0, Yu’ €W] . (5.4)
EeghE EEFhor
/¢C RSN B CATED S AL APITE R S S ()
Eeé‘hE e€l’, %, e€l’, %,

+ace€ZFh§| JGE / i — / Sur—0,  VureWs, (59
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/¢Lw+2/¢L +Z/ = 2 [ o

Ecé&y, E eel'\ver e€0ver e
2
vo. > fepw=0 et enr, (56)
e€l',U0Qver

e

/¢%w+2/¢c ”+Z/¢Lny /¢Lny

EES h B Fhor eGthor e

+ o, P |/¢” w’] =0, Vw’ € W . (5.7)

eGF Uthor

As before, the central-upwind numerical fluxes are utilized in (5.4)—(5.7):

. aout X¢P ¢u EY _ ain X¢P ¢u 5]2 aoutaln
(xooryr = SO - O, el
s bout X¢P ¢v f]l _ bin X¢P ¢v 512 boutbln
(xopor) = UL ) ) -
L L 5.8
ooy = NGNS —aB(@L)T  aptap
u CL%Ut a[r} a%ut 1n
(_¢%> _ _b%Ut(¢i>fl — bf(qﬁi)fz _ b(L),Utbllr,l. [¢L]
' byt — b byt — b

where the one-sided local speeds are:

agt = max ((¢")%", (x0")",0) . aif == min ((x@")E', (x¢")%*,0). 5.9
by = max (x¢")', (x@"),0) , b = min (x¢")F", (x¢"),0)) . |

Notice that the inequalities similar to (3.10),

out in out _ bin

<1, o< <l and s < (5.10)

out in — out in — 77 out in — 7 out in —
ar, ar, ap - —ar by —bp by — b

which are needed in our convergence proof, are satisfied for the local speeds defined in (5.9) as
well (for simplicity, we assume that a®"* —a™ # 0 and 0°"* — ™ # 0 throughout the computational
domain).

We now show that the operator A is well-defined by proving existence and uniqueness of
(67, 0%, 9L, L)
Lemma 5.2 There exists a unique solution (¢, ¢5, ¢}, ¢%) € Wr it XWe e XWXV

of (5.4)—(5.7).

Proof: First, notice that equations (5.4)—(5.5) can be rewritten as the explicit linear differential
equations for ¢} and ¢F. Hence, there exists a unique solution (¢7,¢%) € Wy ;. x Wy,
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Equations (5.6)—(5.7) can be rewritten as

/¢Lw+au d/cb“ w ==Y [, Z/ —65 il

€T, U8Qver Ee& eelyer
+ E /gzﬁinxw“, vw" e W (5.11)
e€0ver °,

[ +o. ﬁ/wn wl== 3 [aw),- ¥ [k

0 €€l U0 Qmor 2 Ee€& eeIhor
+ E nyw”, Vw’ € Wy 4. (5.12)
€€ or e

The bilinear form on the left-hand side (LHS) of equation (5.11) is coercive since for all o € W} |

2
/Wﬂru Tel / 1> llelloq -

Q e€l' L U0Qver
It is also continuous on Wy! , x W}, while the linear form on the right-hand side (RHS) of (5.11)
is continuous on W . Hence, there exists a unique solution of (5.11). The same argument is
true for equation (5.12). This concludes the proof of the lemma. O
Our next goal is to show that the operator A maps S into itself and that A is compact.
By the second Shauder fixed-point theorem, [24], this will imply that the nonlinear mapping
(P, ¢°, ¢, ¢°) € S — A(¢?, ¢°, d*, ¢°) has a fixed point denoted by (pPG, cPY uPE PG).

Theorem 5.3 Let the solution of (1.3)-(1.6) satisfy the assumption (5.1). Then for any
(97,9 8", ¢) €5, A(¢?, 9%, ¢",¢") € S.
Proof: Let (¢, ¢¢, ¢%, ¢¥) € S and (97, 05, 0%, d%) = A(¢”, ¢°, ¢", ¢”). We introduce the follow-

ing notation:
=gl =D i=p—p, TO=¢-0 i=c—0 (5.13)
T™i=9f —u, '=u—u, T :=¢) -0, & :=v-—0. .

It follows from the consistency Lemma 4.1 that the exact solution of (1.3)—(1.6) satisfies not only
equation (3.3) but also the similar equation

/ptwp—i- Z /V,opr Z /{Vp n.}w’] +¢ Z /{pr n.} +<7p /
Eegy, ecl’y, ecl’y, ecl'y, | ‘
— Z /X,ou (w?), + Z / Xpu)ng [w’] Z /X,ofu (w”), + Z / xpv)ny[w’] = 0,(5.14)

EeghE EFV“ EES h g e]_‘*hor
where
o 0P ) —af(xpu)?” _afaf
(xpu)™ = - - 5 1/l
i a ag —ap "

o D Op0) = U (xp)” by
(va) = bout b1[1/1 B b(zlut _ bl[r} [p]7
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out

and the local speeds a$"®, al?, b3"*, and b* are given by (5.9). Using (5.13), equation (5.14) can
be rewritten as:

/ptwp+Z/Vﬁpr /{Vp n, wp+52/{Vw” n. ﬁ]+ap H/ﬁ]w”

Eeé, g ecl’y, ecl’y, ecl’y
— Z/quﬁ (w?), + Z /Xpu nglw’] — Z/quﬁ wp Z /va 1y [w”’]

Ee&y, E GF"er Ee&y, el—*hor

/gpwﬂ Z/vgpkuZ/{vgﬂ n}wp—az/{pr n,}[¢]

Eeg, R eel’'y e€l’y %,
6‘/§pwp+2/§puw” Z/XP w’),
Ee&, ¥, E€&y 3y

+ Z /Xﬁpv (w”), Z /Xp —v)(w’),,. (5.15)

Eeéy, E Eeé&y, E

Subtracting equation (5.15) from (5.4) and choosing w” = 7°, we obtain

d 2
;dt (WHOQ) + 1910+ 20 3 72 NG,
ecl'y,
(1—¢) {V7? - n}[r*] + X7 ¢" (17) ((xdL9")" — (xpu)™) ng[1"]
+ X779 ("), ((x@L0")" = (xpv)™) ny [7]
/5t7p+2/ VeV TP — Z/{vgp n,}[’] +52/{vrp n,}[¢”]
Ecéy h g ecl'y eGFhe
_Pr P1[77] Pu(TP) Pu(TP)
+0PZ|€‘/[§][T Ezeng/fuT EzegzhE/fvT
+ Z/Xp ¢ —u) (1) +Z/Xp —u)(7?), =17 + T3 + ... + Tf;.  (5.16)
E'EghE EeghE

Next, we bound each term on the RHS of (5.16) using standard DG techniques. The quantities
g; in the estimates below are positive real numbers, which will be defined later.
We begin with the first term on the RHS of (5.16). The Cauchy-Schwarz inequality yields:

T < (=) Y IV} gl [l

ecl'y

As before, we denote by E' and E? the two elements sharing the edge e. Then, using the
inequality (2.5), we obtain

E? P

20, 1

S IV Ho Mo < Z (H (V)

eel’'y

+ H(VT'O
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Ct'f’
< 572 3 (197 + 197l g2) 171l

ecl'y,

and hence, using the fact that |e| < v/h, we end up with the following bound on T%:
2 2
2 r 2
TP <t > IVl + CF Z e ‘H[T’)]Ho@ =NV +C7 D L. (5:17)

Ee&y ecly, ecly, |€‘ ’
Consider now the second term on the RHS of (5.16). From Lemma 5.1 we know that ¢* is a
bounded function, hence T4 can be bounded as follows:
T <5 > 1), N0+ C5l°lo 0 < 5l 1o o + C5ll7* 5.0 (5.18)
Ecéy,
Next, we bound the third term on the RHS of (5.16) as

1< 3 (| [ i (ot = )l

eclyer

e

+ [ ‘7 5 (00010 — (o)) el

CLmCLOUt
* / outL L [¢p plng[T’]
ar,

Using (5.10) and (5.13), the first term on the RHS of (5.19) can be estimated by
t<x Y | [ (@66 = () malr)

> ( 6/(7%“)51%[7”] +| [eon
+| [ens i) =1

u —~ 1
+| [0 =00 n.lr
We now use the Cauchy-Schwarz inequality, the trace inequality (2.3), the inequality (2.5), the
assumption (3.2), the approximation inequality (2.2), and the bound on ¢* from Lemma 5.1 to
obtain the bound on I:

) —: [+ 11+ III. (5.19)

IS _HTp||OQ+K || Tp ||0e+0*
\ |

eel'y

h2min(rp+1,sp) h2min(ru+l,su) )
ok u o
() + el =l

p u

A similar bound can be derived for the second term II on the RHS of (5.19). To estimate the last
term on the RHS of (5.19), we first use (5.13) and the definition of the one-sided local speeds

(5.9) to obtain
m<c (HTPHOE ‘/gﬂ 1[7°] ) = II1.

eclyer
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Then, using the Cauchy-Schwarz inequality, the trace inequality (2.3), and the approximation
inequality (2.2), we bound III as follows:

—~ Kh r? h2min(rp+1,sp)
11 < (—12 +K2) > G + O
r le] ’ rose
P ecl'y P

Combining the above bounds on I, II, and III, we arrive at

) 7»’2) ) h2min(r,+1,s,) h2min(ry+1,s.) s
131 < I+ 0 3 BN + € (P + ) e -l
o

ecl'y, |€‘ u

(5.20)
The terms T} and T? are bounded in the same way as the terms T} and T¥, respectively, and
the bounds are:

7] < ll(7) + 1l g 0 (5.21)

2
ullloq
and

h2 min(r,+1,s,) h2 min(ry+1,sy)

2
2 r 2 * *ok ) ~12
121 < 171 + €8 3 I + O (T + ) 4 01~
o

ecl'y |€‘ v

(5.22)
The term T} is bounded using the Cauchy-Schwarz inequality and the approximation inequality
(2.2):
h2 min(r,+1,s,)

ITY| < |7 ll50 + C” (5.23)

2s,
o
Using the Cauchy-Schwarz inequality, Young’s inequality, and the approximation inequality

(2.2) for p, we obtain the following bound for the term T7:

7o) < Pl ) C*h2min(Tp+1,sp)—2 o1
7] < ellIVTPlloq + T (5.24)
p

The term T} is bounded using the Cauchy-Schwarz inequality, the trace inequality (2.4), and
the approximation inequality (2.2):

’f’ﬁ h2 min(rp+1,s,)—2

(5.25)

ey

ecl'y,

Il + C*

le] o ?

To bound the term T§ we use the trace inequality (2.5), inequality (2.3), the Cauchy-Schwarz
inequality and Young’s inequality:

h2 min(rp,+1,s,)—2

75| < <gllIVllloq + C* 5, (5.26)
P
Similarly, we bound the term T}, by:
2 2min(r,+1,s,)—2
AT
IThl < Cf D ‘—(QH[Tp]Ho,e HO (5.27)
eel'y 14
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For the terms 7Y, and T%,, we use our assumption on the smoothness of the exact solution
together with the Cauchy-Schwarz inequality and the approximation inequality (2.2) to obtain
the following bounds:

) ) ) *h2min(rp+1,sp) ) ) ) . h2min(rp+1,sp)
Tl < Sl )elllog + > TRl < anlll)lll o+ —mg— (5:28)
p p

Consider now the term 77;. We first use (5.13) to obtain

¢ feen])

Then we apply the Cauchy-Schwarz inequality and the approximation inequality (2.2), which
result in

>kh21rnin(r“—i-1,s“) . . g
1T < g+ O O — (5.29)

u

The bound on the term 7%} is obtained in the same way as the bound on T7;:

h2 min(ry+1,sy)

ITE| < Blll(7°), g +C + O™ 9" = g0 (5.30)

2s
oY

Finally, we plug the estimates (5.17)—(5.18) and (5.20)—(5.30) into (5.16) and use the assump-
tion that h < 1 to obtain

1d 2
Sl lig + (1= — < —ef = cf — ey — R)IV Il

2
r 2
1l [

+ (0, = Cf = Cf = C5 = C{ = Cfy) Y

eel'y |€‘
) ) 2 § h2min(rp+1,sp)—2 h2min(ru+1,su) h2min(rv+1,sv)
< B+ 0+ I+ € (e — + e )
Kk U ~112 U ~112
+C ([0 = allo.q + 19” = vllo.0)- (5.31)

We now choose ¢” and the penalty parameter o, so that the coefficients of the |||V 7?|||,, and

> ecr, r—jH[T’)]HgQ on the LHS of (5.31) are equal to 1/2. We then multiply equation (5.31) by 2
and integrate it in time from 0 to ¢. Taking into account that (¢, ¢”) € S and using the fact
that 70 = 0, we obtain:

ecl'y

t
2 ~ 2
P+ [ (IR0 X B, ) < & [ 1l
0 0

h2 min(r,+1,s,)—2 h2 min(re+1,s:)—2 h2 min(ry+1,54)—2 h2 min(ry+1,84)—2
o + + + (5.32)
2s,—4 7»255—4 7:23”—4 7’28”_4 : :

P c u v
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Next, we apply Gronwall’s Lemma 2.6 and take the supremum with respect to t of the both sides
of (5.32):

T

2
sup 3+ / (|||v7p|||og+2| e HOG)
’ 0

ecl'y,

h2 min(r,+1,5,)—2 h2 min(re+1,s:)—2 h2 min(ry+1,54)—2 h2 min(ry+1,8,)—2
< ( g + - - ) ,(5.33)

2sc.—4 28,—4 2s8y—4
p T’C c ’r‘u u ’r‘v v

where C! is a constant that depends on 10l (Lo o2 1Pl (Lo omy:zzy 12l Lo o722
[0l (< ((o,77); 22(02))» @nd T" only.

According to the definition on page 9, the estimate (5.33) implies that ¢ € S.

Using similar techniques, it can be shown that (¢, @Y, ¢%) € S as well (see Appendix A for
the detailed proof). Therefore, we have shown that A(S) C S, and the proof of Theorem 5.3 is
now complete. O

Let us recall that our goal is to show that the operator A has a fixed point. Equipped with
Theorem 5.3, it remained to prove that A is compact. To this end, we need to show that A is
continuous and equicontinuous.

Lemma 5.4 The operator A is continuous and equicontinuous.

Proof: We consider the sequence {(¢?, ¢S, ¢%, ¢¥)} and assume that
sup ([[(¢7, or, ¢p, d1) — (87, 0%, 6", ¢")[[s) = 0 as n — oo.
te[0,7
Let
(@ PLims Py PLn) = AlDh, &7, D5 1) (5.34)
and
(67, 0L, 0L, 01) = A(¢”, ¢C 9“, ¢") (5.35)
be two solutions of (5.4)—(5.7). We denote by (A C ¢”) the difference between these two
solutions (note that (&5’2’0,5%0,&5%0,5%0) = (0,0,0,0)), subtract (5.35) from (5.34), and choose
the test function in the resulting equation for p to be w? = qg’z This yields:

d
;dtwummwmmmg| ZGAIHS
—(1-9 Y [(93 n)@)+ Y [ o) +Z/x¢ — (@),
e€ly %, Eeé, g Eeé, g

- 3 Joderniiie 3 [ e - (ehasir) i)
e€Tyer e€lyer

3 [ @@, + X [l - o XB56" ), (5]
5[ TR g o

+ 2 / (X0, 8")" = (X7, 02)7)) my[07] = Ry + Ra+ .. + Ry, (5.36)

eEFhor
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We now bound each term on the RHS of (5.36).
The term R; can be bounded using the Cauchy-Schwarz inequality, Young’s inequality, and
the inequality (2.5):

1 ~
|R1| < 6|||V¢Z|||gﬂ +Cy Z B ‘H[W)]Hoe (5.37)
ecl'y,

Next, applying the Cauchy-Schwarz and Young’s inequalities and using the boundedness of
||¢"[| . established in Lemma 5.1, we obtain the following bound on Rj:

1 ~ ~
| Ro| < 6|||(¢’2)AH3,Q + Col| 97115 00 (5.38)

Using the Cauchy-Schwarz and Young’s inequalities and the fact that qb’i’n € S, we bound the
term R3 by

1 i u ()
B3| < Sll(@D). 0 + Csllén — ¢"50 (5:39)

We then use the Cauchy-Schwarz inequality, the inequality (2.5), and the first numerical flux
formula in (5.8) to estimate Ry:

2
~ T ~
|[Ra| < 167150+ Ca Y T2 NOLIIG (5.40)

EEFh|€‘
We now consider the term Rs. It follows from formulae (5.8)—(5.9) that the numerical fluxes
(x¢7 ,0")" is the composition of the continuous functions with respect to the variables (gb“)fl

and (gb“)fQ. Hence, we can apply the Cauchy-Schwarz inequality and the inequality (2.5) to Rs
so that it is bounded by

2
|| < 1(x97,,0")" = (XOL,u08) o +C5 D %II%]II%@- (5.41)

eel'y

The terms Rg, R7, Rs, and Ry are similar to the terms Rs, R3, Ry, and Ry estimated in (5.38),
(5.39), (5.40), and (5.41), respectively. Therefore, we obtain

1~ ~
Rl < Z[11(67),lI[6.0 + Coll oL 15 0 (5.42)
1 ~
|7 < 6|||(¢’2)y|||3,9 + C?H(b” — ¢"ll5.0 (5.43)
|Bs| < |67 Il5 + Cs Z p |H[¢L]||Oev (5.44)
ecly,
) 2
|Rol < [1(x07,,0")" = (X9 00)"Nlg o + Co Y |—’)‘H[¢’)]H08 (5.45)
ecl’y,

Substituting the estimates (5.37)—(5.45) into (5.36) yields:

1d

5519000 + SNV G e + (0, - O) 3 2 ‘HW]IIOG_0*!\5’2!\3,9+0**<||¢>Z—¢>“H§,Q

eel'y

67 = 0"l + 10605,0")" = (007,060 [l + 10685068 = (007,060l )
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where the penalty parameter o, is chosen sufficiently large so that the coefficient (o, — C) is
nonnegative.

We now integrate the latter inequality with respect to time from 0 to ¢ and apply Gronwall’s
Lemma 2.6 to obtain

t t
110+ [ (VIR0 + (0= €0 3 TN Jar < a1 (er B+ [ (et - 618
0

ecl'y 0

#1608 = 0+ 10,0 — (O80T + 10,0 — (0,00 E) )

Finally, taking the supremum over ¢ and since ggﬁ’o = 0, we arrive at

T T
o 155850 + [ (1199210 + 3 (0GB e < 3 [ (1021 1~
0 0

te[0,7)
+ 1| (e .8 — <x¢>'z,n¢z>*r|§,ﬂ 1(x9,0")" = (X0 80)" 12 ).

This inequality together with the similar inequalities for qgc, qgu, and gg”, which can be obtained
in an analogous way, imply continuity of the operator A.

Applying similar techniques to the difference (EE,ECL,EZ,EZ) = (97,85, %, &Y ) (t1, x1, 1) —
(@7, 95, 0%, dY)(t2, x2,y2) and using the fact that (¢, ¢*) € S, one can show that the operator
A is equicontinuous. ]

Equipped with Lemma 5.4, we conclude that the operator A is compact. Hence, by the second
Schauder fixed-point theorem, [24], it has at least one fixed point (pP%, P4 uP% vPY) which

Y )

is the DG solution of (3.3)—(3.6). For this solution, we establish the convergence rate results,
stated in the following theorem.

Theorem 5.5 (L*(H')- and L>*(L?)-Error Estimates) Let the solution of the Keller-Segel
system (1.3)-(1.6) satisfies the smoothness assumption (5.2). If the penalty parameters o,, o,
ou, and o, in the DG method (3.3)-(3.9) are sufficiently large and 7y, > 2, then there exist
constants C, and C., independent of h, r,, rc, vy, and r, such that the following two error
estimates hold:

T
2
r 2
||PDG - P||Loo([o,T];L2(Q)) + HW(PDG - p)mLQ([O,T];LQ(Q)) + (/ ﬁH[PDG - p]”Oe) <Gk,

0
T
DG DG /rg
||C — C||L°°([O,T];L2(Q)) + H‘V(C — C)|||L2([O,T];L2(Q)) + / ‘_||
0

where

FE =

+ + +

<hmin(rp+1 ,$p)—1 hmin(rc—i-l,sc)—l hmin(ru—i-l,su)—l hmin(m—i—l,sv)—l )
Sc—2 Syu—2 Sy—2
r.e T Y

Sp—2
T’
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Proof: The result follows from the definition of space S, the fact that the DG solution is a fixed
point of the compact operator A (defined above), the hp Approximation Lemma 2.1, and the
triangle inequality. O
Remark. The obtained error estimates are h-optimal, but only suboptimal for 7.

Finally, equipped with the results established in Theorem 5.5, we obtain the following bound
for the blow-up time of the exact solution of the Keller-Segel system.

Theorem 5.6 Let us denote by t, the blow-up time of the exact solution of the Keller-Segel
system (1.1) and by tPC the blow-up time of the DG solution of (3.8)-(3.9). Then t, < tDC.

Proof: The solution p of the Keller-Segel model blows up if ||p|| 1) becomes unbounded in
either finite or infinite time (see, e.g., [26, 27]). Therefore, in order to prove the theorem we need
to establish an L°°-error bound.

From Theorem 5.5 we have the following L2-error bound:

min(rp,+1,sp)—1 min(re+1,s:)—1 min(ry+1,84)—1 min(ry+1,s,)—1
16 = bl < Gy (M 4 o T B,
Tpﬂ Ir’cc /r’uu T”UU

which together with the inverse inequality (2.6) leads to the desired L*-error bound,

min(r,+1,s,)—2 min(re+1,s:)—2 min(ry+1,54)—2 min(ry+1,8)—2
1P = pllmy < G (g — + o T T,
,r,pp Ir’cc ruu T”UU

which, in turn, implies that

hmin(rp+1,sp)—2 hmin(rc+1,sc)—2 hmin(ru+1,su)—2 hmin(rv+1,sv)—2
DG
o HLoo(Q) < ||pHL°°(Q)+CP < 503 + rse—3 + rsu—3 + ysu—3 )
P c u v

From the last estimate the statement of the theorem follows. O

6 Numerical Example

In this section, we demonstrate the performance of the proposed DG method. In all our numerical
experiments, we have used the third-order strong stability preserving Runge-Kutta method for
the time discretization, [23]. No slope limiting technique has been implemented. The values of the
penalty parameters used are o, = 0. = 1 and o, = 0, = 0.01. We note that no instabilities have
been observed when the latter two parameters were taken zero, however, since our convergence
proof requires o, and o, to be positive, we only show the results obtained with positive o, and
0., which are almost identical to the ones obtained with o, = o, = 0.

We consider the initial-boundary value problem for the Keller-Segel system in the square
domain [—3, 1] x [—1, 1]. We take the chemotactic sensitivity x = 1 and the bell-shaped initial
data . .

p(z,y,0) = 1200e 120" +v7) c(z,y,0) = 600~ 0@+,
According to the results in [25], both components p and ¢ of the solution are expected to blow

up at the origin in finite time. This situation is especially challenging since capturing blowing
up solution with shrinking support is extremely hard.
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In Figures 6.1-6.4, we plot the logarithmically scaled density, In(1+pP%), computed at different
times on two different uniform grids with h = 1/51 (Figures 6.1 and 6.3) and h = 1/101 (Figures
6.2 and 6.4). The results shown in Figures 6.1-6.2 have been obtained with quadratic polynomials
(i.e.,r, =r.=r, =1, =1 = 2), while the solution shown in Figures 6.3-6.4 have been computed
with the help of cubic polynomials (i.e., r, =7.=17, =17, =1 =3).

Numerical convergence of the scheme is verified by refining the mesh and by increasing the
polynomial degree. As one can see, the computed solutions in a very good agreement at the
smaller times (t = 1.46 - 107>, 2.99 - 107°, and 6.03 - 107°). However, at time close to the blow-
up time (¢ = 1.21 - 107%) the maximum value of pP% grows while its support shrinks, and no
mesh-refinement convergence is observed: the numerical solution keeps increasing when the mesh
is refined. Using Theorem 5.6, we can conclude that in this example, the blow-up time of the
exact solution is less or equal to the blow-up time of the DG solution, which is approximately
D¢ ~ 1.21-107%

We note that even though no slope limiting or any other positivity preserving techniques
have been implemented, the computed solutions have never developed negative values and are
oscillation-free.

i\
IO
) AN ,//II"O:O\“\\
g7 A\ A1 N
SN i "““‘:&v}\

N

o i

TN

AN
A0\

Figure 6.1: h = 1/51,r = 2. Logarithmically scaled density computed at ¢ = 1.46 - 107> (top left),
t =2.99-1075 (top right), t = 6.03 - 10~ (bottom left), and ¢t = 1.21 - 10~* ~ P (bottom right).

Finally, we check the numerical order of the convergence of the proposed DG method. We first
consider the smooth solution at a very small time ¢ = 1.0 - 1077 and test the convergence with
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Figure 6.2: The same as in Figure 6.1 but with h = 1/101,r = 2.

respect to the mesh size h for the fixed r = 2 (piecewise quadratic polynomials). Since the exact
solution for the Keller-Segel system is unavailable, we compute the reference solution by the
proposed DG method on a fine mesh with h = 1/128 and using the fifth-order (r = 5) piecewise
polynomials. We then use the obtained reference solution to compute the relative L?- and relative
H'-errors. These errors are presented in Table 6.1. From this table, one can see that the solution
numerically converges to the reference solution with the (optimal) second order in the H'-norm
which confirms the theoretical results predicted by our convergence analysis. Moreover, the
achieved third order of convergence in the L?-norm is optimal for quadratic piecewise polynomials.

We then test the convergence of the proposed DG method with respect to the degree r of
piecewise polynomials for the fixed h = 1/32. The obtained results, reported in Table 6.2, show
that the error decreases almost exponentially when the polynomial degree increases (this is a
typical situation when DG methods capture smooth solutions).

We also compute the L?-errors with respect to the reference solution, for the solutions plotted
on Figures 6.1 and 6.2 at times ¢t = 2.99 - 1075 and ¢ = 6.03 - 10~°. These times are close to the
blowup time and the solutions develop a pick at the origin. The obtained errors are reported in
Table 6.3. As one can see, even for the spiky solutions, the convergence rate is very high though
it, as expected, deteriorates as t approaches tP¢.
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Figure 6.3: The same as in Figures 6.1-6.2 but with ~ = 1/51,r = 3.

h | L?*-error  Rate | H'-error Rate
1/4 3.0578 - 1.5591 -
1/8 1.0290 1.6 1.2348 0.35
1/16 0.0796 3.7 0.5206 1.3
1/32 0.0075 3.4 0.0937 2.5
1/64 0.0006 3.6 0.0157 2.6

Table 6.1: Relative errors as functions of the mesh size h; r = 2 is fixed.

r | L2%-error Rate H'-error  Rate
2 7.5e-03 — 9.4e-02 —

3 9.0e-04 5.2 2.2e-02 3.6
4 8.0e-05 8.4 2.6e-03 7.4
5 6.9e-06 11.0 2.9e-04 9.8

Table 6.2: Relative errors as functions of the piecewise polynomial degree r; h = 1/32 is fixed.
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Figure 6.4: The same as in Figures 6.1-6.3 but with ~ = 1/101,r = 3.

Appendix A: Proof of Theorem 5.3 — Continuation

In this appendix, we complete the proof of Theorem 5.3 by proving that (¢$, ¢%,¢%) € S

We begin with ¢¢ and show that ¢¢ € S in a way similar to the proof of the fact that
#7 € S given in §5. First, from the consistency Lemma 4.1 we obtain that the exact solution of
(1.3)-(1.6) satisfies equation (3.4), which may be rewritten as

/ctw —l—Z/VAVw— /{Vc n.} +€Z/{Vw n, A]+<rc > |/

Eeé;, ) ecl’y, ecl’y, ec
/cw—/ /gtw—;/V§CVw+§€/{vgc n, }[w]
ey / Vor 0] 0. 3 W / €] - / £t + / £ (A1)

We then subtract equation (A.1) from equation (5.5) and set w® = 7¢ to obtain

ld cl|2 cl|2 cl12 Tg c112
ST Mog +mlloq +111V7 |||0,Q+UCZHH[T]HO@

eel’'y
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L t=299.107° t=6.03-107°
L?-error Rate L?-error Rate

1/51 | 55002 50002

1/101 5.2e-03 3.4 1.1e-02 2.2

Table 6.3: Relative L?-errors at two different times; r = 2 is fixed.

/TPT +(1—¢) Z/{VT n, TC]+/§TC+Z/V§CVT —Z/{vgc n.}

ecl’y, Eegy, h eel’y,

+52/{V7 n.} +ac H/gcc /g”—/g% TP+ .+ T (A2)

ecl'y, e

Next, we bound each term on the RHS of (A.2).
We begin with the term 77. We first bound it using the Cauchy-Schwarz and Young’s inequal-
ities, and then apply the estimate (5.33). This results in

1
2 2
77| < ||TC||0,Q + ZHT'OHO@

- o2 CI h2min(rp+1,sp)—2 h2min(rc+1,sc)—2 h2min(ru+l7su)—2 h2min(rv+l7sv)—2 A3
<|r HO,Q + u 2504 + r2se—d + r2su—d T r2s0—4 - (A3)
P

The terms Ty, TS, T, T¢, T¢, and T¢ are similar to the terms 77, T¢, T¢, TE, Ty, and T¥,
estimated in (5.17), (5.23), (5.24), (5.25), (5.26), and (5.27), respectively. Hence, they can be
bounded as follows:

2
c c c|12 c Te c1112
T5) < e5ll[Vrilliq +Cs > @H[T Mo.e: (A4)
ecl'y
h2min(rc+1,sc)

c cl12 *
T3 < |7 HO,Q +C 25c ) (A.5)
) h2 min(re+1,8:)—2
ITil < allVrelllon + O —— 55— (A.6)
2 2min(re+1,s¢)—2
c c Te c1112 * h
TS < Ce Y @H[T loe +C s (A7)
eecl'y, ¢
) h2 min(re+1,s:)—2
751 < <6llIVTelllon + ¢ —— 5= (A.8)
. . ,7_2 . h2 min(re+1,s:)—2
9] < C§ ) E |||[ ™5 +C or—— (A.9)

eecl'y,
Finally, the last two terms on the RHS of (A.2), T§ and T§, are bounded using the Cauchy-
Schwarz inequality, Young’s inequality, and the approximation inequality (2.2):

h2 min(re+1,sc) ) h2 min(r,+1,s,)
T < g+ e
c Tp

T3] < lI7°ll6.0 + C (A.10)
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Now substituting (A.3)—(A.10) into (A.2) and using the assumption that h < 1, we obtain the
following estimate for 7¢:

1d cl|2 c c c cll2 c c c 7’3 c1112
5%”7 HO,Q +(1—e5 —eq—eg)llIVrT |||o,Q + (0. — C5 — C5 — Cf) Z |_€‘||[T ]Ho,e
eel'y,
h2min(rp+1,sp)—2 h2 min(re+1,s:)—2 h2min(ru+1,su)—2 h2min(rv+1,sv)—2
c||2 c
< 3|l + €5 ( T R S e IR ) (A11)

This estimate is similar to the estimate (5.31). After a proper selection of ¢ and the penalty
parameter o., we multiply (A.11) by 2, integrate with respect to time from 0 to ¢, apply Gronwall’s
Lemma 2.6, and take the supremum over ¢. This results in an estimate, which is completely
analogous to (5.33):

T

2
C 2 C 2 TC C 2
oup I3 + [ (mvT 2ot 3 ir mo,e)
0,7 / le|

eel'y

h2min(rp+l,sp)—2 h2min(rc+1,sc)—2 h2min(ru+l,su)—2 h2min(rv+l,sv)—2
< n ( o + + + ) ,(A12)

2sc—4 28y —4 28y —4
I ,rcsC Tusu TUS»U

where C! is a constant that depends on 16l 2o o, 20y 1Pl (oo o1y £200) s €Ml (poe 0.7 12002
el zoe o220y 1l e o.a1):22 () 191l 20w 072202y @0 T only.
Hence, according to the definition on page 9, the estimate (A.12) implies that ¢ € S.

Next, we proceed with proving that ¢} € S. Once again, by the consistency Lemma (4.1), the
exact solution satisfies the following equation (compare it with (3.5)):

/uw —l—Z/c(w)x—FZ/(—C)unx[w]— Z /cnxw + o, Z a/[ﬂ[w]
Q Ee&y, E eclyer o e€IQver e e€l' L U0Qver o
u u C u C u ,r'i u u
——[ew-3 [ewn+ ¥ [enwr—os 3 el @A)
Q Ee&y, E e€Over e e€l', U0Qver e
where ) o .
sl LA A )
ar- —ap ar- —ag
Subtracting equation (A.13) from (5.6) and choosing w" = 7", we obtain
w2 T?L w2
I l60+ou > EH[T Illog
e€l', U0Qver
—- > [ X [ewi- Conni s X [ [er
Eegy, E eEF‘,;er e e€0ver e QO

£ [er - X [entra, S [ =Ty e T (a1

Ee&, ¥, €0 ver *, €U er | %
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and bound each term on the RHS of (A.14).
To estimate the term T7*, we first integrate by parts and rewrite it as

(- [ TS [rra) =X [0, [t

Ee€& g, E€E)y, ecOE ", Ee&y 1, erveruagver ’

Then, using the formula for the jump and the average operators (2.1), we obtain

Iy = Z/ T Z/ Wrtin, — Z/ “Urtn, — Z /TC[TU]TLI.

Ee&y, GEFV“ eeF"er e€0Qver e

Hence, using the Cauchy-Schwarz inequality, Young’s inequality, the inequality (2.5), and apply-
ing the assumption (3.2), we arrive at the following bound for 77"

2 1 2
7Y < 16 HT“HOQ +CF ) %H[T“]Hﬁ,e + )l lha + G5l + G5 Y %H[Tcﬂlﬁ,g
e€l', U0Qver ecl'y,
(A.15)
A bound for Ty* can be obtained in a way similar to the one the bound on T4 has been
established:

" aout
mi= 3 (|

e€l'yer

alnaout
[ o — uin.lr)
e

From (5.10) and (5.13), the first term on the RHS of (A.16) can be estimated by

1<y (‘e/(rC)Elnx ‘/ VE g [ )::I

ecl'y,
Using then the Cauchy-Schwarz inequality, the trace inequality (2.3), the inequality (2.5), and
the assumption (3.2), we estimate I as follows:

+

) = [+ IT + L. (A.16)

h2 min(re+1,sc)

IS_’|THOQ+KZ|‘H ||Oe+0

2s
7"‘ c
ecl'y, ¢

A similar bound can be derived for the second term on the RHS of (A.16). The third term on
the RHS of (A.16) is similar to the third term on the RHS of (5.19), hence it can be bounded by

,r,z h2 min(ry+1,84)

Kih w2
111 < <T—3+K2) > |—e‘I|[T ]||o,e+07ﬁ—su

ecl'y
Combining the above bounds on I, II, and III, we arrive at

(hQ min(ry+1,s4) h2 min(re+1,sc) )

+
2s 2s
ro reoe

2
u C u TU u *
T3] < I7°lloq + Ci ) @H[T o +C (A.17)

eel’'y
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To bound the term T3, we use the Cauchy-Schwarz inequality, Young’s inequality, and the
inequality (2.5), which yield

2
Ty

T < Glirllon+ G5 > o, (A.18)

e€0Nver |

The term 7)) is bounded with the help of Cauchy-Schwarz inequality, Young’s inequality, and
the approximation inequality (2.2):

1 h2 min(ry,+1,84)
T < =m0+ C" ——F——

<4 (A.19)

2s
ro

Using the Cauchy-Schwarz inequality and the inverse inequality (2.7), we first bound 73" by

T < Y 1€N0ml(T)allo g < D 1€%Mlo gh ™ rullTllo 5 = T3 (A.20)

Eegy, Ee€&y

We then use Young’s inequality, the assumption (3.2), and the approximation inequality (2.2) to

obtain
h2 min(re+1,s:)—2

N’U, 1 u *
T < EHT ||§7Q+C (A.21)

25c.—2
roe

The term T¢ is bounded using the Cauchy-Schwarz inequality, the trace inequality (2.3), and
the approximation inequality (2.2):

. . TZ win2 i} h2 min(re+1,sc)
TEI<Cy Y @H[T o + € — (A.22)
eeaner ¢
The last term 7% is similar to term 7%, estimated in (5.27). Hence,
2 2 min(ry+1,s4)—2
U U Ty uy (|2 * h
<o Y R et (A23)

e€l',U0Qver | ‘

After obtaining the estimates (A.15) and (A.17)—(A.23), we plug them into (A.14) and use the
assumption h < 1 to obtain

o w2 u u u u u TQQL ul(|2 u u c||2
1_6HT ||0,Q + (0, — Cf = Cf = C¢ — CF = C¥) Z EH[T ]Ho,e <(A+Cy+ 05T HO,Q
e€cl',U0Qver
1 . ) . ,r,g 2 . h2min(rc+l,sc)—2 h2min(ru+1,su)—2
F IR+ 03 3 Tl oo (S — e ) )
eel'y c u

In the same way as we have derived the estimate (A.24), we can establish the following bound:

) v (|2 v v v v v T12) V1|2 v v cl|2
EHT HO,Q + (0, = CY = CF = Cg — C7 = () Z ?|||[7' ]Ho,e <(A+Cy+ )l ||0,Q
ecl' L, U0Qmor
1 . ) ) 7"2 P i} h2min(rc+l,sc)—2 h2min(rv+l,sv)—2
F B, + 05 3 I + € (g — + e — ) (A0)

ecl'y,
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Next, we use Lemma 2.4 to bound ||7'C||(2)’Q on the RHS of (A.24) and (A.25). This results in

) n i i i i U Ti i
EHT H(2)Q + (0w = C} = Cf = Cg — C7 = C¥) Z ?H[T ]||(2)e
e€cl',U0Qver
1 u u cl12 U i i 7“3 c
< (3 + KO+CE+ )Vl + (@ + KO+ 3 +2) 3 Sl
ecl'y,
. h2min(rc+l,sc)—2 h2min(ru+1,su)—2
+Cr ( e ) : (A.26)
and
b v (|2 v v v v v T?) v]||2
EHT HO,Q + (0, = CY = Cf = C¢ = C7 = %) Z EH[T ]Ho,e
e€lp U0Qor
1 v v c||12 v v v 7“3 c
< (3+ K0+ 05+ O)ITrlEa + (G5 + KL+ C+C) S I,
ecl'y,
§ h2min(rc+l,sc)—2 h2min(rv+1,sv)—2
+ C” ( T?sc—2 + 7’12)8”_4 ) : (A27>

We then multiply both sides of (A.26) and (A.27) by 16/5, choose the appropriate penalty
parameters o, and o, integrate with respect to time from 0 to 7', and use the estimate (A.12)
to obtain

n 2
2 r 2
[ (e + S i)
0 e, UdQver
h2min(rp+l,sp)—2 h2min(rc+l,sc)—2 h2min(ru+l,su)—2 h2min(rv+l,sv)—2
<M ( e + — + 0+ — ) (A.28)
,r,p P /r’c c Tu u TUSU

and

A 2

v(2 Lo 01112
/ (nr ot 3 gnmnw)
0

e€l LU0 or
v h2min(rp+l,sp)—2 h2min(rc+l,sc)—2 h2min(ru+1,su)—2 h2min(rv+l,sv)—2
S C 25,—4 + 2s.—4 + 26, —4 + 25 —4 ,(A29>
Tp P /r’c c /r’u u TUSU

where C™" and C™V are constants that depend on |pll oo rpyzziys 126l Lo o2

HC||(L°°([O7T]);H2(Q))’ HCtH(LOO([QT]);L?(Q))? ||UH(L°°([O,T]);L2(Q))> v ’(Lm([O,T]);L?(Q)y and T only.
We now estimate the RHS of (A.24) in a different way: we apply the inequality (2.5) and the
inverse inequality (2.7), which yield

) u||2 U i i u u u uy||2
EHT ||o,Q + (00— C = Cy = C§ = CF = CF) Z EH[T ]Ho,e
e€cl',U0Qver
4 2min(re+1,s)—2 2 min(ry+1,s4)—2
TC ci2 % h h
S KuﬁHT ||O,Q + Cu ( Tzsc_g + )

254,—4
oY
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We then take the supremum over ¢, choose the appropriate penalty parameters o, and o,, and
use the estimate (A.12) to obtain

2
/ru 01112
sy <HT ot > i ]||o,e)

e€l L U0Qver
2 min (rp+1,s,)—4 h2 min(re+1,s.)—4 h2 min(ry+1,8,)—4 h2 min(ry+1,s,)—4
<C < + + + )
25,—8 25.—8 254,—8 25y —8
,r,p P /r’csc f,"usu f,"vsv

Finally, using the assumptions on r, s, and h, we conclude that

(11 11
s (Il Y B ) <o (G grgeg) (A0
p

r2
€€, U0 ver ¢ v

where the constant C} is independent of h and 7.
The bound on 7" is obtained similarly:

2

TS w2 N 1 1 1

o (17 + S R ) <O (o). (e
eGF Uth P ¢

where C7 is independent of i and r.
According to the definition on page 9, the estimates (A.28)—(A.29) and (A.30)—(A.31) ensure

that (¢},¢Y%) € S.
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