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We present a hybrid numerical method for computing the propagation of a
diffusing passive pollutant in shallow water. The flow is modeled by the Saint-
Venant system of shallow water equations and the pollutant propagation is
described by a convection-diffusion equation.

In this paper, we extend the hybrid finite-volume-particle (FVP) method,
which was originally introduced in [CK04, CKP06] for the model of inviscid
pollutant propagation, to the case of a diffusing pollutant. The idea behind
the FVP method is to use different schemes for the flow and pollution compu-
tations: the shallow water equations are numerically integrated using a finite-
volume scheme, while the transport equation for the propagation of passive
pollutant is solved by a deterministic particle method. When the pollutant
diffuses, the second step of the FVP method has to be modified. We propose
a new hybrid Eulerian-Lagrangian method, in which the convection term is
treated by the method of characteristics (which is, in the context of scalar
transport equations is very similar to the deterministic particle method), while
the diffusion is resolved using the fast explicit operator splitting method re-
cently developed in [CKP].

1 Introduction

Prediction of a pollution propagation is an important problem in many indus-
trial and environmental projects. Different mathematical models are used to
describe this phenomenon and to obtain an accurate location and concentra-
tion of pollutant.

In this paper, we consider the transport of a passive pollutant by a flow
modeled by the Saint-Venant system of shallow water equations [Sai1871]. In
the one-dimensional (1-D) case, the system reads:



2 A. Chertock, E. Kashdan, and A. Kurganov











ht + (hu)x = S,

(hu)t +

(

hu2 +
gh2

2

)

x

= −ghBx.
(1)

Here, h and u are the depth and the velocity of the water, g is the grav-
ity constant, and S is a source term. The function B represents the bottom
topography.

The propagation of the pollutant is modeled by the convection-diffusion
equation:

(hT )t + (uhT )x = TSS + νhTxx, (2)

where T is the pollutant concentration, the coefficient TS represents a con-
centration of the pollutant at the source, and ν is the viscosity coefficient.

For simplicity, we will assume that the pollution source has already been
turned off, that is, we will only consider the S ≡ 0 case (numerical treatment
of the source term was discussed in detail in [CK04, CKP06]). Under this as-
sumption, equations (2) and (1) are coupled only through the velocity u. This
suggests the following strategy for developing numerical methods for the sys-
tem (1)–(2): first, solve the Saint-Venant system (1), and then substitute the
obtained velocity field u into equation (2), which can be whereupon viewed as
a linear convection-diffusion equation with possibly discontinuous coefficients.
Since equations (2) and (1) can be solved separately, they can be solved by two
different methods: one method should be designed for the hyperbolic system
of balance laws (1), while the other method should be capable to accurately
solve the convection-diffusion equation (2). This simple hybrid strategy was
realized in [CK04, CKP06], where the FVP method was introduced: the Saint-
Venant system (1) was solved by a shock-capturing finite-volume method (the
central-upwind scheme from [KL02, KNP01, KT00]), while the inviscid trans-
port equation, (2) with ν = 0, was accurately solved by the deterministic
particle method (see, e.g., [Rav85] for a comprehensive description of particle
methods for transport equations).

The main advantage of the FVP hybrid strategy is its flexibility. There
is a wide variety of reliable finite-volume methods for the Saint-Venant sys-
tem (see, e.g., [ABBKP04, AB03, GHS03, JW05, KL02, KP, NPPN06, XS06]
for just a few examples of recently proposed methods). One may select one’s
favorite method for the first part of the hybrid algorithm. When the system
(1) is solved for h and hu, a global approximation of u at each time level can
be computed by dividing a piecewise polynomial approximation of hu by a
piecewise polynomial approximation of h. This gives one a velocity coefficient
in equation (2), which can be thus treated as a linear equation. Since par-
ticle methods are specifically designed as a non-diffusive numerical methods
for transport equations, they allow to very accurately resolve contact discon-
tinuities that typically appear in the pollutant concentration field, as it was
demonstrated in [CK04, CKP06].

In this work, we extend the FVP method to the case of diffusing pollutant
(ν 6= 0). The first part of our hybrid algorithm (an Eulerian finite-volume
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method) is not affected by the presence of diffusion in equation (2), therefore,
only its second part is to be modified. There are several ways to implement
particle methods for convection-diffusion equations (see, e.g., [CHO73, CK00,
DM91, DM90, LM99, RUS90]). These methods can be, in principle, applied
to equation (2), but will require either smearing the particle approximation,
which may introduce an extensive amount of numerical diffusion (especially in
the convection-dominated case), or computing the numerical derivatives on a
nonuniform mesh, formed by the particle locations, which may be inaccurate
(especially in the two-dimensional (2-D) case).

To overcome these difficulties, we propose the following Lagrangian strat-
egy for solving (2). First, we rewrite equation (2) in an equivalent nonconser-
vative form:

Tt + uTx = νTxx, (3)

We then use the Strang operator splitting [Str68] and solve the convection
equation:

Tt + uTx = 0, (4)

and the diffusion equation:
Tt = νTxx, (5)

separately. As it has been shown in [CK04], the particle method applied to
(2) with ν = 0 is basically equivalent to the method of characteristics ap-
plied to equation (4). The linear heat equation (5) is very simple and can
be solved exactly by convolving the initial condition with the heat kernel, as
it has been done in [CKP]. Since we need to obtain point values of T after
each parabolic step of the operator splitting method, a certain quadrature
rule should be applied to the integral form of the solution, and this may be
rather computationally expensive, especially in the 2-D case. However, in the
convection-dominated case (that is, when ν << 1), splitting increments ∆tspl

can be made very large (since the splitting error is proportional to ν3(∆tspl)
2)

and we can obtain a very accurate approximate solution by applying only a
small number of operator splitting steps.

2 Description of the Method

In this section, we provide a description of our 1-D hybrid Eulerian-Lagrangian
method for the system (1),(3). Similarly, to the FVP method, the new hybrid
method consists of two parts. We first solve the Saint-Venant system (1) by the
semi-discrete second-order well-balanced positivity preserving central-upwind
scheme, recently proposed in [KP], with time evolution carried out by the
third-order strong stability preserving (SSP) Runge-Kutta solver [GST01].
We would like to emphasize that this part of our hybrid Eulerian-Lagrangian
algorithm can be replaced with one’s favorite finite-volume method.
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We now focus on the second part of out hybrid algorithm: the Lagrangian
version of the fast explicit operator splitting method for the convection-
diffusion equation (3). In the following, we will assume that an approximate
velocity u(x, ·) is available at every time level. We split the convection-diffusion
equation (3) into the convection equation (4) and the diffusion one (5). We de-
note the solution operators, associated with these equations by SC and SD, re-
spectively. Then, according to [Str68], the solution of the convection-diffusion
equation (3) satisfies:

T (t + ∆tspl) = SC(∆tspl/2)SD(∆tspl)SC(∆tspl/2) + E(∆tspl), (6)

where ∆tspl is a splitting time increment, and the one time-step splitting error,
E(∆tspl), is proportional to ν3(∆tspl)

3 (an accumulative splitting error is then
proportional to ν3(∆tspl)

2). Notice that a success of the fast explicit operator
splitting method hinges on smallness of the viscosity coefficient ν, since then
the splitting error is small even for sufficiently large values of ∆tspl and one
can obtain a very accurate solution with only few splitting steps (see [CKP]
for details).

In practice, the exact solution operators SC and SD are to be replaced
with approximate ones. We use the (Lagrangian) method of characteristics to
solve equation (4). To this end, we assume that a set of characteristic points,
{xi(t)}, and the corresponding pollution concentration values, {T (xi(t), t)},
are available at a certain time level t. We then perform the first convection
substep of (6) by evolving the characteristics points according to the following
system of ODEs:

dxi(t)

dt
= u(xi(t), t),

which is numerically solved by the same SSP Runge-Kutta method used for
time evolution of the shallow water solution. At the end of this substep, the
solution will be realized as a set of point values {T ∗

i := T (x∗
i , t + ∆tspl/2) ≡

T (xi(t), t)}, where x∗
i := xi(t+∆tspl/2). The diffusion substep is then carried

out by evolving this intermediate solution exactly according to:

SD(∆tspl)T (x, ·) = T (x, ·) +

∞
∫

−∞

G(x − ξ, ν∆tspl)(T (ξ, ·) − T (x, ·)) dξ, (7)

where G(x, t) := (4πt)−1/2 exp(−x2/4t) is the heat kernel. Since after the first
convection substep only a discrete set of values {T ∗

i } is available, we apply the
trapezoidal rule to formula (7) and end up with the new set of point values
of T at the same locations {x∗

i }:

T ∗∗

i = T ∗

i +
∑

j

G(x∗

i − x∗

j , ν∆tspl)(T
∗

j − T ∗

i ). (8)

To complete one splitting step, we perform another convection substep and
obtain the new set of characteristic points, {xi(t + ∆tspl)}, with the same set
of solution values there: {T (xi(t + ∆tspl), t + ∆tspl) ≡ T ∗∗

i }.
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Remark The 2-D extension of our hybrid Eulerian-Lagrangian method is
rather straightforward. We would only like to comment here on the 2-D ex-
tension of the trapezoidal quadrature (8), which has been performed by ar-
ranging a nonuniform set of characteristics points {(x∗

i , y
∗
i )} into the Delau-

nay triangulation by implementing the algorithm based on the open source
mesh generation package GeomPack, available at www.geompack.org (see also
www.csit.fsu.edu/∼burkardt/f src/geompack/geompack.html). This de-
termines the continuous piecewise linear approximation of the integrand in
the 2-D analog of (7), which, in turn, can be integrated exactly: the integral
over each triangle is equal to the area of the triangle multiplied by the average
of the integrand values at the triangle vertices.

3 Numerical Examples

In this section, we illustrate the performance of the proposed hybrid Eulerian-
Lagrangian method on two numerical examples. We compare the obtained
results with those obtained by a “purely” Eulerian finite-volume method
(we have used the second-order central upwind scheme with the MinMod1.5
limiter [KL02, KNP01, KP]) applied to the Saint-Venant system (1) and
the convection-diffusion equation (2) separately, as it has been suggested in
[CKP06] as the way to improve the resolution of contact waves in T cap-
tured by the central-upwind scheme. In all our numerical experiments, the
gravitation constant was taken g = 1 and viscosity coefficient ν = 10−5.

One-Dimensional Example. We start with the 1-D example taken from [CKP06].
In this example, we assume that the initial water level and the initial discharge
are constant: h(x, 0) +B(x) ≡ 1, h(x, 0)u(x, 0) = 0.1, the bottom topography
is given by:

B(x) =

{

0.25(cos(10π(x − 0.5)) + 1, if 0.4 ≤ x ≤ 0.6,
0, otherwise,

and the initially polluted area is [0.4, 0.5]:

T (x, 0) =

{

1, if 0.4 ≤ x ≤ 0.5,
0, otherwise.

The pollution spot propagates to the right, and we numerically track its evolu-
tion. The pollutant concentration at times t = 0, 2, and 4, computed by the hy-
brid Eulerian-Lagrangian and the finite-volume methods, is shown in Figure 1
(left), where both ∆x for the central-upwind scheme and the distance between
the initially uniformly distributed characteristics points is taken 1/200. One
can clearly see the superiority of the results obtained by our hybrid method.
In Figure 1 (right), we refine the mesh employed by the finite-volume method.
The solutions are shown at time t = 4. One can observe that the resolution
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achieved by the hybrid Eulerian-Lagrangian method with ∆x = 1/200 is com-
parable with the one by the finite-volume method with ∆x = 1/1600. The
difference becomes even more prominent in the 2-D case, considered in the
next numerical example.
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Fig. 1. Propagation of the 1-D pollution spot by the hybrid Eulerian-Lagrangian method
(’pluses’) and the second-order finite-volume method (solid line) at different times (left
figure). In the right figure: comparison of the hybrid solution with the finite-volume ones
computed on finer grids with ∆x = 1/400 (dashed line) and ∆x = 1/1600 (solid line).

Two-Dimensional Example. Here, the initial pollutant spot is transfered with
the flow over the exponentially shaped bump B(x, y) = 0.25 exp(−10x2−5y2).
A 2-D version of the system (1),(3) is solved subject to the initial conditions:

h(x, y, 0) + B(x, y) = 1, h(x, y, 0)u(x, y, 0) = 0.2, h(x, y, 0)v(x, y, 0) = 0.05,

where h is, as before, the water depth, and u and v are the x- and y-
components of the velocity vector. The initial concentration of the pollutant
is:

T (x, y, 0) =

{

1, −0.75 ≤ x ≤ −0.25, −0.25 ≤ y ≤ 0.25,
0, otherwise.

In Figure 2, we show the pollutant concentration T at time t = 4, computed
by our hybrid Eulerian-Lagrangian method (left) and the second-order central-
upwind scheme (right) with ∆x = ∆y = 1/50 for both the central-upwind
scheme and the initial uniform distribution of the characteristic points. One
can clearly observe a much better resolution achieved by the hybrid method.
As in the 1-D example, we refine the computational grid and apply the second-
order central-upwind scheme with ∆x = ∆y = 1/100 (Figure 3 (left)) and
∆x = ∆y = 1/200 (Figure 3 (right)). As one can see there, our hybrid method
still outperforms the finite-volume one.
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Fig. 2. Propagation of the 2-D pollution spot by the hybrid Eulerian-Lagrangian method
(left) and the second-order finite-volume method (right). In both computations ∆x =
∆y = 1/50. The dashed line represents the boundary of the initially polluted domain.
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Fig. 3. Propagation of the 2-D pollution spot by the second-order finite-volume method
with ∆x = ∆y = 1/100 (left) and ∆x = ∆y = 1/200 (right). The dashed line
represents the boundary of the initially polluted domain.
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[GHS03] Gallouët, T., Hèrard, J.-M., Seguin, N.: Some approximate Godunov
schemes to compute shallow-water equations with topography. Comput.
Fluids, 32, 479–513 (2003)

[GST01] Gottlieb, S., Shu, C.-W., Tadmor, E.: High order time discretization meth-
ods with the strong stability property. SIAM Rev., 43, 89–112 (2001)

[JW05] Jin, S., Wen, X.: Two interface-type numerical methods for computing
hyperbolic systems with geometrical source terms having concentrations.
SIAM J. Sci. Comput., 26, 2079–2101 (2005)

[KL02] Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant
system. M2AN Math. Model. Numer. Anal., 36, pp. 397–425 (2002)

[KNP01] Kurganov, A., Noelle, S., Petrova, G.: Semi-discrete central-upwind
scheme for hyperbolic conservation laws and Hamilton-Jacobi equations.
SIAM J. Sci. Comput., 23, 707–740 (2001)

[KP] Kurganov, A., Petrova, G.: A second-order well-balanced positivity pre-
serving central-upwind scheme for the Saint-Venant system. submitted to
Commun. Math. Sci.

[KT00] Kurganov, A., Tadmor, E.: New high-resolution central schemes for non-
linear conservation laws and convection-diffusion equations. J. Comput.
Phys., 160, 241–282 (2000)

[LM99] Lacombe, G., Mas-Gallic, S.: Presentation and analysis of a diffusion-
velocity method. ESAIM: Proceedings, 7, 225–233 (1999)

[NPPN06] Noelle, S., Pankratz, N., Puppo, G., Natvig, J.: Well-balanced finite vol-
ume schemes of arbitrary order of accuracy for shallow water flows. J.
Comput. Phys., 213, 474–499 (2006)

[Rav85] Raviart, P.A.: An analysis of particle methods. In: Numerical methods
in fluid dynamics (Como, 1983). Lecture Notes in Math., 1127, Springer,
Berlin (1985)

[RUS90] Russo, G.: Deterministic diffusion of particles. Comm. Pure Appl. Math.,
43, 697–733 (1990)
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