Effects of a Saturating Dissipation
in Burgers-Type Equations

A. KURGANOV
AND

P. ROSENAU
Tel-Aviv University

Abstract

We propose and study a new variant of the Burgers equatidndissipation fluxes that saturate
as the gradients become unbounded. If the upstream-d@anstiransition is above a critical
threshold, the corresponding Riemann problem admits a vgefilktion wherein part of the
transit is accomplished by a jump. It is shown that the solutio a Cauchy problem with
sufficiently small compact or periodic initial data pressvts initial smoothnesse) 1997 John
Wiley & Sons, Inc.

1 Introduction

The model problem studied in this work,

(11) ug + f(u>m = I/Q(U:B)x, V> 07

is an attempt to advance our understanding of the interadigiween non-
linear convection and nonlinear diffusion with a saturgtisissipation flux.
The model problem (1.1) extends the Burgers equation in tagswf (u) is

assumed to be an arbitrary smooth function and the flux fancpi(s) satisfies

(1.2) Q(s)] <1, Q'(s) >0 forall s; Q'(s) — 0 as|s| — oo.

Recall that in the Burgers equation, a toy model of the NaSiekes equa-
tions, the flux function is linear in gradients so that thepmsse to a sharp
interface may become unbounded and fail to represent theigaiyeality. The
same difficulty occurs in the Navier-Stokes equations. Hikeire of a typical
continuum equation to describe faithfully high-gradiehepomena is due to
the fact that the derivation of a continuum model from a ngcapic system
is based very explicitly on the assumption of small gradieithis is a typical
state of affairs in many equations of mathematical phydiosctly when dif-
fusion is needed to counterbalance the steepening due tection, diffusion
is least capable of reacting properly. The excessive amaiudiffusion avail-
able at high gradients is an accidental by-product of theaegjpn in small
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gradients and bears no resemblance to the behavior of thmalrisystem in
the ultraviolet regime. The high-gradients falsetto is secli consequence of
truncation that turns functional expansions into polyralsjiand this brings
in the disastrous behavior at infinity. Clearly, postponthg truncation one
more order, as is so often done by physicists, not only doésnmarove the
overall response of the system, but in many cases replacesranpdel with
an ill-posed problem! In addition, a local expansion in geats tends to elim-
inate important global constraints embedded in the orlgimablem such as
the Hamiltonian structure or an upper bound on the speedafggation.

When diffusion is based on linear flux-gradient relatiorereé is an im-
mediate response to a sharp interface accompanied by ainterfinx. It is
physically clear that the rate of growth of the flux functiorush be finite.
Depending on the problem at hand, different strategies kaee utilized to
achieve this goal. For instance, in dilute gases governeth&yBoltzmann
equation, the moment (Chapman-Enskog) expansion, insit&eing trun-
cated, is resumed approximately. In the resulting systamsport coefficients
become wavelength dependent with heat and momentum fluaesaturate at
short wavelengths [8]. In fast processes the conventiorg@ring that begets
the Navier-Stokes equations is replaced with a new orddhag places tem-
poral and spatial changes on an equal footing. This leads lgparbolic
diffusion with acoustic speed serving as a natural uppentdhat tempers
the response of the system to large gradients.

The convection-dissipation model [10] studied in the pnéseork is an
extension of the dissipation flux model proposed and andlyad9, 11]. A
typical flux function was found to be [9]

Q(s) =

s
V1t+s2'

Equilibrium states constructed on the basis of such diisipdluxes support
discontinuous interfaces [9]. It was found in [11] that kea a finite time for
such a flux to resolve an initially imposed, perfectly shareiface.

The model equation (1.1) is thus a natural candidate forystgdthe in-
teraction between saturating dissipation and convecfiomarticular, we ex-
amine when this interaction generates smooth patternss ttemonstrated
in Section 2 that if the downstream state is below a crititeieshold, the
upstream-downstream transition is smooth. However, atiigeghreshold part
of the upstream-downstream transition must be accomplisteea discontinu-
ous jump. Such states will be referred tosapercritical The critical threshold
is determined by the saturation level of the particularigetson flux. We also
demonstrate numerically that both the continuous and disaoous kink so-
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lutions are attractors. Kinklike initial states are seerctmverge in time to
a kink solution. Its nature depends solely on the total @asi-downstream
disparity of the initial state.

In Section 3 and Section 4 we introduce a weak solution andiden
the Cauchy problem associated with (1.1) subject to peariadi compactly
supported initial datum

(1.3) u(z,0) = ug(x).

In Section 3 we prove the existence of the solution to the lprab(1.1),
(1.3) by the vanishing viscosity method; that is, we consttie equation

(1.4) u) + f(u)e = vQul), +6ud,, 6>0,

with the same initial data (1.3). Its smooth solution deead the (small)
parameters, and the solution of (1.1),(1.3) will be obtained as a limfit«d

by letting 6 | 0. This approach provides a convenient way to define weak
solutions to equation (1.1).

We also prove the uniqueness (Section 3) and the existeradidf 5)
of the smooth (classical) solution of (1.1) with a sufficlgramall, smooth
initial datum. In this context it is necessary to call atientto a gap in our
understanding of the Cauchy problem, namely, while for dicgahtly small
and smooth initial datum we can ascertain the existence lafssical solution,
if condition (3.5) is violated, it is unclear whether thewidn remains smooth
or steepens and breaks down within a finite or infinite timeis dpen status
of the Cauchy problem should be contrasted with our undedstg of the
Riemann problem, where numerical experiments clearlyciagi the emergence
of sub- and supercritical states (see Section 2). A compledef of this fact
is still not available.

In Section 4 we consider equation (1.1) withassumed to be a small
parameter,

(15) W+ F)e = vQ(Y),, v 0.

We study the behavior of solutiong'(x, t) of (1.5),(1.3) asv | 0. We prove
that in this case.”(x,t) converges to the entropy solution of the scalar con-
servation law

(1.6) u + f(u)y =0

with initial data (1.3). The proof is straightforward: Wetam an error es-
timate in theW —1(L>°)-norm, which also allows one to estimate the rate of
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convergence in thé?-norms. For2 < p < oo these estimates are better than
the estimates that were obtained for the standard vanishistgsity approxi-
mation of (1.6),

(see [12]). Thus if one considers (1.5) as a differentialrapipation of (1.6),
it is better than the usual vanishing viscosity approachs Ehquantified more
precisely in Section 4.

2 Traveling Waves

Study of traveling waves provides perhaps the simplest wagxamine the
convective-dissipative interaction. Throughout thistegcwe letr = 1 and
f(u) =2, and we begin withQ(s) = s/v/1 + s2, that is,

Uy
V31+u2

The Q(s) used in (2.1) is typical of the flux functions we shall considad
serves as a motivation to study the general caseulet0 andu = u; be the
upstream and downstream values, respectively, anc:let x — At; then one
integration yields

(2.1) up + (u?)y =

xT

u,
VIt+uZ’

andu, vanishes at: = 0. For u, to vanish atu; we needu; = A as well,
which relates the downstream amplitude with the sp&eaf the wave. We
now re-express equation (2.2) in termswafto obtain

(2.2) 4 u? =

9 u?(u — up)?

Pl —u?(u—up)?

(2.3)

Equation (2.3) contains the needed information, for as Esthe denominator
does not vanish, there is a continuous trajectory conrgaipstream with
downstream. At the critical value of = 2, the denominator vanishesat= 1
and the profile has a vertical slope at this point. Ror 2, no continuous
upstream-downstream transit is possible; part of it musadmomplished via
a discontinuous jump. This is a genuine subshock layer. ilrdgion, other
physical mechanisms that may otherwise be negligible becoracial. A
typical solution with a discontinuous jump is displayed igute 2.1.
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Figure 2.1. A supercritical downstream converges in tima fiscontinuous kink. For com-
parison, a solution to the corresponding Burgers equataso shown.

The total amount of the jump across the subshock is easibuledéd and
found to be

(2.4) [u] = \/u? — 4.

For downstream states close to the critical value, the sadbsis weak but may
become arbitrarily large with a further increase in the eatdi the downstream
state.

Since in the purely diffusive problem (i.ef{u) = 0) the rate of saturation
was found to determine whether an initial discontinuity G&nsustained for a
finite time [11], it is also of interest to examine the intdraw between inertia
and an arbitrary saturating functi@gh To this end we reconsider problem (2.1)
using an arbitraryQ limited only by (1.2) and take (u) = u?. As before, we
seek steadily progressing waves with upstream and dovamststates being
u = 0 andu = uq, respectively. Againi; = A, but instead of (2.2), we obtain

(2.5) —u+u? = Q(u,).

To find the highest permissible speed that supports a canigitrajectory,
we note that the dissipative flu@ is bounded, while the inertial flux (the LHS
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of (2.5)) is not. Balancing the two fluxes determines thedatgoermissible
wave speed. In equation (2.5) both fluxes assume a negalive; therefore
we compare their corresponding minima attained wea QQp andu = \/2.
Consequently;-\2/4 = Qo implies

(2.6) A=+V—4Qo,

which provides the upper bound on the speed of continuoogyessing waves.
The actual amount of the jump in a supercritical state depeofdcourse, on
the particular choice of).

Thus it is the saturation level of the flux function that megtenost, with
the saturation details being of lesser importance. Notejeler, that we also
need the flux function to be monotone to ensure stability. iIF@anywhere
Q' (s) < 0, convexity of the elliptic part is lost and instability magtsn. This
depends on the details of the flux function [3].

We conclude this section with a number of humerical expenish@tended
to demonstrate the role of the traveling solutions as atiraclt is convenient
to impose symmetric upstream-downstream states at +wu; so that the
resulting traveling wave becomes stationary and thusyetraited numerically.
In Figures 2.1 and 2.2 we consider the supercritical and ritidad cases,
respectively, and demonstrate how the kink solution is e@ghed in time by
an initially imposed kink. The supercritical and subcalidownstream states
in the figures are/5 and+/5/10, respectively.

The same procedure is used in Figures 2.3 and 2.4, but nowittad datum
takes the form of a step function. The symmetric choice ofupstream and
downstream states dictates that instead of (2.4) the jumgitton should be

[u] = 2¢/u? — 1.

On the basis of the examples above and many others, one desdiat
the ultimate outcome of the evolution depends only on whethe upstream-
downstream disparity of initial data is sub- or supercaticAlthough we lack
a rigorous proof to quantify the supercritical affairs, renoal experiments
demonstrate very clearly that both subcritical and sujitéral solutions emerge
as global attractors to wide classes of initial data. For gamnson, we also
display the kink form of the analogous Burgers equation. $hape of the
resulting profile is very similar to the shape of the subcaitikink.

Remark. For the numerical studies of the subcritical cases we hagd us
a simple first-order Lax-Friedrichs-type difference scleentHowever, in the
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Figure 2.2. A subcritical downstream state is shown to crgevén time to a smooth kink
solution that for all practical purposes is indistinguisteafrom the solution of the corresponding
Burgers equation.
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Figure 2.3. The same as in Figure 2.1 but with a discontinueitial datum.
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Figure 2.4. The same as in Figure 2.2 but with a discontinuwitial datum.

presence of the discontinuity, the first-order scheme doégnovide sufficient
resolution of the shock. Therefore, in the supercriticadecahe numerical
solution was obtained using a second-order scheme basecdhamoacillatory
central difference scheme due to Nessyahu and Tadmor [6].

3 Weak and Classical Solutions

To define a weak solution of equation (1.1), we considep{tegularization
(1.4). This is a strictly parabolic regularization ¢~ 0) and consequently,
by standard arguments (which we omit), problem (1.4),(Adnits a unique
global classical solution. This brings us to the followingfidition:

DEFINITION 3.1 Letu’ be a solution of the regularized problem (1.4),(1.3).
Then we define aveak solutionof the problem (1.1),(1.3) alms u®; that
is,

(3.1) W ass 0.

To validate this definition it is necessary to prove the exist of the limit
(3.2).
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THEOREM 3.2 Consider equatiorfl.4) subject tol¥'! (L!)-initial data, (1.3),
and assume that conditiofi.2) holds. Then there exists a sequerdgesuch
that 8, | 0 andu®» converges in thd.'-norm asn — cc.

PROOF We differentiate (1.4) with respect tq then multiply bysgn (u)
and integrate over the-domain. We obtain the following equation:

[lublido & [ F0)rsn(ud)do
(3.2) m v
= V/Q(ug)m sgn(ui)dx—i—é/uim sgn(ui)dm.

The second term in the LHS of (3.2) is equal to zero, and its BHi®npositive
due to assumption (1.2). Hence,

(3.3) Jid o 0)llr < ()l forall t>0.

This means that® € W*'(L'(x)), which is compactly imbedded ifi'(z).
Therefore Theorem 3.2 follows from compactness arguments. |

Remark. Note that one can relax the assumption on the initial datudh an
assume only itd.*°-boundedness.

We now study the question of existence and uniqueness of rttomth
(classical) solution of (1.1),(1.3). Unigueness of the kvaalution of (1.1),(1.3)
will be presented shortly.

THEOREM 3.3 Consider the problenfl.1),(1.3)with @ satisfying(1.2). Let
the range ofQ)(s) be denoted by

(3.4) Q:R— [a,b],
wherea < 0 andb > 0. If uo(z) € C3, and if it is sufficiently small so that
(3.5) v[1Quo)ll g + 2[1f (u0)l[ e < @ < v - min(—a,b),

then there exists a unique global classical solution(df1),(1.3) u(xz,t) €
C?Y(x,1).

Remark. It is a challenging task to understand what happens if crmdit
(3.5) does not hold. Let us rewrite equation (1.1) in thediwlhg nondivergent
form:

(3.6) u + f(u)e = vQ (Uz) s -



762 A. KURGANOV AND P. ROSENAU

Recall that@'(s) > 0 for all s, andQ’(s) — 0 as|s| — oo. Thus the
RHS of (3.6) is “almost" viscous, because it vanishes onlyugs— oco. To
understand the difficulty in analyzing the problem, we nbt in our problem
the competition between dissipation and convection is farenintricate than,
say, the classical Burgers equation. The nonlinearity ef dissipative part
tends to induce a cascading effect; if, for any reason, aiimweis enhanced,
the resulting increase in gradients depresses dissipatibich in turn causes
a further increase of the gradients. Will smoothness benalily lost? And
if it is, will it occur in finite time?

PROOFE The existence of the classical solution will be shown intf®ec
5. We now turn to the uniqueness part of the theorem.ulLét, t) andu?(x, )
be two classical solutions of equation (1.1) with the sanigalndata (1.3),
that is,

B7)  ui+ fu)e =vQud), ul(z,0) = uo(z);
(B8) Ui+ fu)e =vQul),, w?(,0) = ug(z) .

Subtracting (3.8) from (3.7), we obtain that (x,t) — u?(z,t) satisfies the
following equation:

(39)  (u'—ud)+ [fuh) - f(u?)]
where
(3.10) ut(z,0) — u?(z,0) =0

and¢ = ¢(z,t) is betweenu! (z,t) andu?(x,t). Next we multiply (3.9) by
sgn(u! — u?) and integrate over. Then the positivity ofQ’ implies that for
all ¢

d 1
EHU

which in turn yields theL!-contraction of the solution operator for (1.1):

(3.11) (1) — (-, )] 1 <0,

(3.12) [t (1) = ()]0 < [lut (-, 0) = w?(-, 0| 1 -

Hence, since by (3.10)!(z,t) = u?(x, t), the proof of Theorem 3.3 is com-
plete. |

Remark. To prove (3.12) we used the technique established by Quipn [7
In the same way thé'-contraction of the solution operator can be proved for
the regularized equation, (1.4).
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Finally, we return to the question of uniqueness of the weakt®n of
(1.1),(1.3).

THEOREM 3.4 Assume that conditiol.2) holds. Then for alliW!(L>)-
initial data (1.3) that satisfy(3.5), the weak solution of1.1) is unique.

PrROOF We have defined the weak solution of (1.1),(1.3) as a limit of
u®(z,t) asé, | 0, whereu® (x,t) are the solutions to the problem (1.4),(1.3)
with 6 = 6,,.

Let us consider a smoothed initial daturtz, 0) = uj(z) where

(3.13) ug(x) = ug * ().

Here ¢.(x) is a standard mollifier satisfying the following conditions
1
o€ Cy7; Px) > 0; /)¢@Mx:h
-1
1 [z
supp ¢ C [~1,1]; ¢Aw)55g¢<g).

Note that thel.>°-norms of bothu(x) andu(,(x) do not increase after smooth-

ing. Therefore, by Theorem 3.3 there exists a unique claksatution of (1.4)

with the C™ initial datum (3.13). We denote this solution b§**. Obviously,

us®n — uf pointwise ash, | 0. Herewu® is the solution of (1.1),(3.13).
Therefore, to conclude our proof it suffices to show that

(3.14) Ju®m —uf]|;0 — 0 ase |0, 68,10.
We have
(3 15) Huén _ uaHLl _ Huén _ u576n + ua,én _ UEHLI

< s =P+ =

The second term in the RHS of (3.15) converges to zer8,as0, while the
first term, due to the.!-contraction of the solution operator of equation (1.4),
can be bounded as follows:

(3.16) Juf — w0 || 1 < [luo — ul| 2 = Ofe).

Hence we have shown that all converging sequencesz,t) tend to
the same limit,u(z,t), which is the unique weak solution of the problem
(1.1),(1.3). |
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4 Convergenceasv | 0

As we mentioned earlier, the solution operator of equatibm)(is anL'-
contraction and is thus monotone [1, lemma 3.2] &id bounded; that is,

(4.1) lu”C Dl v < e 0)lpy -

THEOREM4.1 Let condition(1.2) hold and letu” be a solution of(1.5)
subject toL>°-bounded initial conditions” (x, 0) = ug(x). Thenu” converges
to the unique entropy solution ofL.6) as v | 0, and the following error
estimates hold for alt > 0:

(4.2) [u”(+2) = u(, )l —1(pe0) < comsty - v,
(4.3) [ (-, ) = u(- t)]| » < const, - v'/P, <p<oo,
(4.4) [0 (-, t) = u(, )|l 1 < consty - v/v.

PROOF LetU(x,t) = [*u(x,t)dx andU”(z,t) = [* u”(z,t)dz denote
the primitives of solutions of (1.6) and (1.5), respectjvelThen they satisfy
the following two equations:

(4.5) U + f(UF) =vQUy,)
(4.6) Ui+ f(Us) =0.

Subtracting (4.6) from (4.5) and denoting Bz, t) the error U"(z,t) —
U(x,t), we obtain

(4.7) Ei+ f'(&,1)) - Bo = vQ(UL),

whereé(z, t) is betweenJ” (x, t) andU(x,t). It follows from (4.7) and (1.2)
that
v < E+ fl()E, <v,

and hence
IEC g < E(,0)||pe + consty - v.

Sinceu”(x,0) = up(z), the last inequality implies (4.2).

Finally, interpolating between thig’—!(L)-error estimate, (4.2), and the
BV -boundedness of the error (which follows from (4.1) and thedl-known
BV-boundedness of the entropy solution of (1.6)), we are ableohvert the
weak error estimate (4.2) into a strong one, (4.3) (e.gtH@prem 9.3]). Since
this estimate does not hold fpr= 1, the L'-estimate (4.4) has to be deduced
using an interpolation betweéei ~!(L!)- and BV -spaces (in fact, all error
estimates of (1.7) were derived in [5, 12] in this manner)isTdoncludes the
proof of Theorem 4.1. ]



EFFECTS OF A SATURATING DISSIPATION 765

Remarks.

1. For equation (1.7) the following error estimates wererahby Nessyahu
and Tadmor [5, 12]:

lellw-s(ze) < Ce Ve, lellw-riony < Cevey el < Cpe?,

wheree(z,t) denotes the difference between the solutions of (1.7) and
(2.6). Our differential approximation (1.5) enables us #rivk better
estimates in théV —1(L>)- and LP-norms ¢ > 1). However, insofar

as theW ~1(LY)-, L'-, and L>°-norms are concerned, our estimates are
the same as the ones derived for the vanishing viscosityoajppation
1.7).

2. Unlike the standard vanishing viscosity model [5, 12],calr error es-
timates apply to any smootfi(u), not necessarily convex

5 Existence of the Classical Solution

In this section we demonstrate the existence of the cldssadation of the
problem (1.1),(1.3) and thus complete the proof of Theoreg Again con-
sider the regularized viscosity initial value problem,401(1.3), that admits a
unique global classical solution. To derive a weak solutibthe nonviscous
problem, (1.1),(1.3), defined as & -limit of the sequence.’~, we assume
adequately small and smooth initial data (3.5). We then cdhetnate that this
solution is smooth and satisfies (1.1) in the classical sense

First, we note that equation (1.4) is parabolic and hencsoitstion satisfies
the maximum principle (e.g., [4]), that is,

(5.1) [ (2, )] < luoll e, 20,

We now turn to the major part of the proof and show a uniformratadness
of [u¢]| for small &’s. To this end we rewrite (1.4) as

(5.2) ul =z,
where
(5.3) 2= vQ(ud) + 6ub — f(u®).

Differentiating (5.3) with respect toand using (5.2), we obtain the following
parabolic equation:

(5.4) 2 = vQ (Ud) zgw + 6240 — f'(u) 2 .
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Its solution, z(z, t), satisfies a maximum principle:

vQ(uz (2, 1)) + bup(z,t) — f(u’(z,1))]

(5.5) ) /
< |[vQ(up) + dug — fluo)llpee s t=>0.

Due to the boundedness af, (5.1), and the smoothness gfand v, one
deduces that fof sufficiently small so that

a+ 6ljug||pee < B < v-min(—a,b),
the inequalities (5.5) and (3.5) imply
(5.6) vQ(ug (2, 1)) + buf(z, 1) < 5, >0,
Using the monotonicity of), we apply its inverse to (5.6) and conclude that
(5.7) |ul (x,t)| < const, t>0,

whereconst = Q~!(3) does not depend of This is the desired estimate of
Jug .

Remark. A similar estimate holds for the Riemann problem and can be
used toward a partial explanation of the sub- and superatifiolutions.

Equipped with the estimate (5.7) we now turn to proving thiégarm bound-
edness ofi{ andu?,. We differentiate (1.4) with respect toand then denote
w := u! to obtain

wy + (W ubw + f(u®)w,

5.8
(5:8) = vQ" () ul wy + vQ (U)W + Swey .

This is a parabolic equation. As we have shown earlier, thedfictent of w,
f"(u®)ug, is uniformly bounded. Therefore, the maximum principle 6.8)
gives the following estimate:

(5.9) lul(z,t)| < consty, 0<t<T,

whereconst = e“T||uf(-,0)|| - andC is a constant that depends my || ; -
and ||ug||; - but not ons. Note that||ul(-,0)||;~ is bounded since the initial
condition is assumed to be smooth and since

up (2,0) = vQ'(up () Jug () + dug () — f'(uo(x))up ().
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Next, the estimate (5.7) implies tha (u®) is bounded away from zero,
that is,Q’(ug) > K > 0, where K is independent ob. Consequently, from
(1.4) we obtain the following estimate:

6 1(p,0\,,6

)

which implies a uniform boundedness |of,|.

We now recall that in Theorem 3.2 we showed the existence efjaence
u®* such that

1

(5.11) un (x,t) L, u(z,t).

Due to the uniform boundednessf, %, andu?, the L'-convergence ofi’
implies a pointwise convergence. In addition, there exastaibsequence also
denoted byu®» that converges ta uniformly. Moreover,u, u,, u;, andu,,
are also bounded, and therefore in order to concludeuthatt) € C*!(x, 1),
it suffices to show thati,, € W'(L?(z)).

To this end we differentiate (1.4) three times with respeat, tthen multiply
by «%_. and integrate over the-domain. Integrating by parts and taking into

rxrr

account the estimates (5.7), (5.9), and (5.10), we obtain:

d § 2 § 2 § 2
||uwxx||L2(ac) < Kl”uxx;vHL?(ac) + Kp — 26”uxxa:a;||L2(x)

dt
(5.12)
2 [ Q) ()P + 18 [ Q" (W)l

dx ,

where K7 and K, are constants that depend only on the initial data &nd
The last term in the RHS of (5.12) can be estimated as follows:

18/’@"(1&2)1#5 ul ol ldx

zx Yrrx Yrrax
(5.13) ¥
1 5 2 2 F) 2
<9Kj3 - ?HuxszLz(ﬂc)—i_E HuzxszLZ(x) :

Here K3 = [|Q"(ud)ul,|;~ ande is an arbitrary number. Consequently,
taking e such that

9K3e? < 2|Q (ud) 1o~
we can estimate the RHS of (5.12) and obtain a differentiadjirality,

d

(5.14) -

5 2 5 2
||umwx||L2(x) < K4||u$$$”L2(x) + K3,
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where K, still depends on the initial data arld but does not depend an
Thus, (5.14) implies the uniform boundednesqmﬁmHLg(gj), which in turn
yields the desiredV!(L?(z))-boundedness of,.

To prove thatu(z,t) is a classical solution of (1.1), we multiply the “vis-
cous" equation (1.4) by a smooth, compactly supported testtionp(z, t) €
Cg’l(q:,t) and integrate it with respect to and¢. Integrating by parts, we

obtain
/

t=0 x
(5.15) , .
:V//Q(Ui")%dﬂcdt—é//u‘s"wmd:z:dt.
=0

t T t=0

—

{uéncpt + f(u‘s”)%,} dx dt

We now pass to the limit in (5.15) & | 0. The uniform convergence af’"
to u implies that

(5.16)
T T
8n
/ {u‘s"cpt + f(uén)@:p}dir dt 2nl0, / / {U(Pt + f(u>90x}dx dt,
t=0 = t=0 @
and
T
(5.17) 5 / /u%m dadt % 0.

t=0 =

It remains to find the limit of the first term in the RHS of (5.15)o this
end, since we have already shown th&-boundedness o&im, (5.10), it is

enough to estimate’,. We differentiate (1.4) with respect toandt, multiply
by sgn(u’,), and integrate over the-domain. We obtain

d

Sl + [ £ aarsen(u)da
(5.18) z

= V/Q(Ug>xmt sgn(uit)dzv—l—é/uimt sgn(uit)d:v.
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For the second term in the LHS of (5.18) we have,

[ (£t + ' ydy) senul)de
= [ [yl + b + £ ] senudi e

T

Hence, due to th&>-boundedness af®, u{, u>, andu?,, it can be estimated
as

(5.19) ‘/f(ué)x:pt Sgn(ugt)dﬂc < Cl”“fctHLl(x) +Ca,

where the constants; andC; depend on the initial data aril. The second
term in the RHS of (5.18) is clearly nonpositive. Finallyetfirst term in the
RHS of (5.18) is equal to

[ (@ @bt + Qu)uly) senul)do

= [ (Qu)ub) senluli)da.

T

and, consequently, it is also nonpositive because of oumaason (1.2).
Thus, from (5.18) we obtain the following differential ingality:

d

(5.20) o

HugtuLl(x) < Cl”ugt”Ll(x) + 0y

Its solution integrated ove(0, T) yields the desired.!-estimate,
(5.21) HuitHLl(%ﬂ <consty, 0<t<T,

where consty depends off|ug|| o, [[uhll foor [[Uufll zoor Ty |1l (+, 0|71, and
the measure of the-domain, which is assumed to be finite. Note that the
boundedness dfu’,(-,0)||;: follows from the assumption that the initial data
is in C3 and from equation (1.4), which after differentiation witsspect tar

yields

uy = — ()W)’ — f'(ubyud,

+ 0 [Q"(ud)(ud,) + Q (W)l ] + oud,
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In conclusion, the estimates (5.10) and (5.21) imply that
ud e WL (z,1)),
which is compactly imbedded ih!(z,t). Consequently, there exists a subse-

quence ofu’ (also denoted by’") such that

(5.22) w2,

Therefore, due to the uniform boundednesmf)fand smoothness ap, we
may pass to the limit in the first term in the RHS of (5.15), atitey

T T
bn ﬂ) z)Px .
(5.23) Vt/o /Q(ux ) dx dt v / /Q(u ) dx dt

x t=0 x

Finally, combining (5.16), (5.17), and (5.23) we conclubatf for any test
function ¢(z,t), the limit functionu(z,t) satisfies the nonviscous equation
(2.1) in the integral sense:

(5.24) /T/{ugpt + f(u)pp}dedt =v /T /Q(ux)goz dx dt .
t=0 @ t=0

But as we have shown earlier(z,t) € C*!(x,t). Combined with (5.24) this
means thati(z, t) is a classical solution of the problem (1.1),(1.3). The jproo
of Theorem 3.3 is thus completed.
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