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We introduce a new high-resolution central scheme for multidimensional
Hamilton—Jacobi equations. The scheme retains the simplicity of the non-oscilla-
tory central schemes developed by C.-T. Lin and E. Tadmor (in p&igsyl J.

Sci. Compu}, yet it enjoys a smaller amount of numerical viscosity, independent
of 1/ At. By letting At | 0 we obtain a new second-order central scheme in the par-
ticularly simple semi-discrete form, along the lines of the new semi-discrete central
schemes recently introduced by the authors in the context of hyperbolic conservation
laws. Fully discrete versions are obtained with appropriate Runge—Kutta solvers. The
smaller amount of dissipation enables efficient integration of convection-diffusion
equations, where the accumulated error is independent of a small time step dictated
by the CFL limitation. The scheme is non-oscillatory thanks to the use of nonlinear
limiters. Here we advocate the use of such limiterssenond discrete derivatives
which is shown to yield an improved high resolution when compared to the usual
limitation of first derivatives. Numerical experiments demonstrate the remarkable
resolution obtained by the proposed new central scheme2000 Academic Press
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1. INTRODUCTION

We consider the multidimensional Hamilton—-Jacobi (HJ) equation iétimiltonian H,
@+ H(Vxp) =0, (1.2)

wherex = (xg, .. ., Xq) ared-spatial variables.

These equations—with and without additional diffusive terms—are of practical imp
tance with applications ranging from mathematical finance and differential games to fi
propagation and image enhancement. Consult [2] and the references therein for a r
bird’s eye view on the theory of viscosity solutions and various applications, and [1, 6
13, 19, 20, 22, 24] for their approximate solution.

In this work we present new second-order central difference approximations to (1
These new schemes can be viewed as modifications of the central schemes of Lir
Tadmor (LT) [19, 20] and as an extension of the method developed by the authors in
for hyperbolic conservation laws and convection-diffusion equations.

The new schemes have a smaller amount of numerical viscosity than the LT sche
and unlike the LT schemes, they can be written and integrated in the semi-discrete f
This allows us to efficiently solve not only Egs. (1.1), but also viscous HJ equations of
form

@+ H(Vxp) = eAg. (1.2)

Semi-discrete schemes are especially effective when they cofmgimeesolutionnon-
oscillatory spatial discretizatiowith high-order, large stepsize ODE solvers for their time
evolution. In addition to being effective as a simple-to-use yet high-resolution solver,
semi-discrete formulation enables long term integration in the presence of degeneratse
fusion, as outlined in, e.g., [15, Section 6.4].

The paper is organized as follows. In Section 2 we provide a brief description of -
central differencing approach for HJ equations.

In Section 3 we introduce our main idea by constructing the new first-order semi-disc
central scheme for (1.1). Then our scheme is extended to the second-order one- (Sect
and multidimensional (Section 5) schemes.

We conclude in Section 6 by presenting a number of numerical results. These result
convincing illustrations that our new central schemes provide high resolution.

2. CENTRAL SCHEMES FOR HAMILTON-JACOBI
EQUATIONS—A BRIEF OVERVIEW

Central schemes can be viewed as Godunov-type projection-evolution methods—sta
with point-values at time level", one reconstructs a piecewise polynomial interpolan
which is evolved to the next time level*?, and then it is being realized by its pointwise
projection. The main feature of central schemeagiglicity, since no upwinding is involved
in the evolution operator. We illustrate this central approach on the example of the c
dimensional second-order LT scheme [20].

Let ¢} denote an approximate value @fx = x;j, t =t") at the grid point X; := j AX,
t":=nAt). Assume that we have computed the valuegoat time levelt". Then we first



722 KURGANOV AND TADMOR

construct a continuous piecewise quadratic spatial interpolant,

(Ap)j, s
_ = X —_ X.
Ax ( i)+

(A¢)js

5(X, ") 1= ¢! —2
P(X, 17) == ¢j + 2(Ax)2

(X = X)) (X = Xj11), (2.1)

which is a second-order approximationgix, t") on the corresponding intervil 1/, :=
[Xj, Xj+1]. Here, (Ag)',,,/AX denotes the usual approximation to the first derivativ
@x(Xj11/2, t"), namely,

n
(A(p)j+§ . <P?+1 - ¢7?
AX AX

Similarly, (A<p)/j+l/2/(Ax)2 is an approximation to the second derivaug(X;;1/2, t"),
where the primé-)’ indicates a numerical derivative. An appropriatalinear limiter, em-
ployed in this approximation guarantees the non-oscillatory behavior of the central sche
There is a wide variety of such limiters, which were developed in the context of hyperbc
conservation laws (see, e.g., [9, 10, 14, 21, 23]). For instance, for an arbitrary grid fu
tion {wj;1/2} one may choose any limiter from the following one-parameter family of th
minmodlimiters [9, 17, 23],

1
! _ H . _ . - . _ .
Wi, _mlnmod<9(w]+g wH%),Z(wJ+ w;_

T, R

NIw
Nl

whereé € [1, 2] and the multivariable minmod function is defined by

min; {x;}, if x; >0 Vj,
minmodXy, Xo, ...) = < max; {X;}, if X; <0 Vj, (2.3)
o, otherwise

We note that i# =1, thenw/jH/2 does not excee\ L wj1/2/AX| and therefore

) , (2.4)

which is the usual approximation to second derivatives. The virtue of (2.2) is the presenc
the paramete?—Ilarger6’s correspond to less dissipative, but stiin-oscillatorylimiters
[9, 17, 23]. The quantity on the right of (2.4) represents yet another possible limiter-
limiter based on the differentiated second-order ENO interpolant which was introdu
in the context approximate HJ solutions by Osher and Shu [22]. We note in passing
this ENO limiter differs from the minmod on the right of (2.4) only at inflection points
where the latter vanishes. The fact minmod values vanish at inflection points guarantee
maximum principle in reconstruction gf;;"'which otherwise fails with the ENO limiter.

At the second step of this projection-evolution method, the quadratic interpolant, rec
structed in (2.1), is evolved exactly in time and is realized by its point-value projection
(Xj11/2, t"1) resulting in

Az‘»"j+1
(Ax)?

s

(Ax)? (’ (AX)?

o =051 = [l 0) dt 25)
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Our continuous interpolant may be nonsmooth at the grid pointyet for At sufficiently
small (so that a CFL condltlo ma>qH’| < , holds) the solution of the initial value
problem (1.1)—(2.1) will remain smooth arouwgﬂ/z for t <t"+4 At =:t"*!, due to the
finite speed of propagation. Hence, the integral on the RHS of (2.5) can be approxim
by the midpoint rule.

To this end, the required midpoint value szx)’;ﬁ/z = px(Xj 1172, t"Y2) can be
predicted by the Taylor expansion,

n n /
X AX 2 AX (AX)2 :
Inserting (2.6) into (2.5) results in the following second-orskaggeredscheme,
T = 2+ 0) — 580 — A (] 27)
?it1 5(% + @j11) — é( <P)j+ (ox . )

This concludes the two-step construction of the second-order, central LT scheme, (Z
(2.7), whichis graphically described in Fig. 2.1. Atwo-dimensional extension of this sche
can be found in [20].

Remarks. (1) In the particular case afAg)|,,,=0, the second-order LT scheme is
reduced to the staggered form of the first-order LxF scheme,

(Ap)? 4
ol = %(w, +¢f1) —At-H (A;+2>. (2.8)

(2) Compared with the LxF scheme, the second-order LT scheme provides m
better resolution of nonsmooth solutions. This is due to the lower amount of numer
dissipation—considerably lower than in the first-order LxF scheme (the humerical visco
present in a staggered central scheme is of afiénx)? /At), wherer is its formal order
of accuracy). However, if we are enforced to use the LT scheme with small time steps (
due to a more restrictive CFL condition associated with the viscous HJ equation, (1.2)),
excessive numerical dissipation—of ord2¢(Ax)? /At), will be accumulated. The effect
of such accumulated dissipation also makes central schemes inappropriate for steady
calculations a$ 1 co (consult the discussion in [15, Sect. 2]).

(pml

j+i2

t
Xj Xj1r2 Xjet

FIG. 2.1. Central differencing approach.
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FIG. 2.2. Problem (6.4)T = 1. Resolution via the modified LT scheme, (2.6)—(2.7), with limiters applied tc
second derivatives.

Our new central schemes introduced in the next three sections have a considerably sr
numerical dissipation of orde®((Ax)%~1). In particular, this allows us to compute the
semi-discrete limit aat | 0.

(3) In fact, the scheme (2.6)—(2.7) is a modified version of the original LT scher
presented in [19]. Here we use the minmod (or any other nonlinear) limiter to appr:
imate the second derivativeyy, instead of limiting the first derivativeyy, as in [19].
We would like to emphasize that in [19, 20] the second derivative was approximated
A(¢))j+1/2/(Ax)?, while here we use a different approximatidsg)’ ., ,/(Ax)?, and
that due to the nonlinearity of the limiter (2.2),

AW@)j41 = ¢ja — ¢ # (A)j, 1 = (@141 — 9))"

Note that a typical solution of a HJ equation is continuous, but its first derivatives may
discontinuous. Consequently, limiting second derivatives seems to be the correct appr
which significantly decreases the amount of numerical dissipation. Indeed, limiting sec
discrete derivatives was already used in [22], using the ENO limiter recorded on the rigt
(2.4). The improvement can be clearly seen even in the one-dimensional case. For inst
consider the Riemann problem (6.4) (from Example 2 below) and compare the numel
results obtained by the modified LT scheme, (2.6)—(2.7), and the original LT scheme [
presented in Figs. 2.2 and 2.3.

3. THE ONE-DIMENSIONAL FIRST-ORDER SCHEME

The main idea in the construction of our new central schemes is to use more pre
information about théocal speed of propagation. We proceed along the lines of [15]
follows.
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FIG. 2.3. Problem (6.4),T = 1. Resolution via the original LT scheme [20], with limiters applied to first
derivatives.

Assume that we have already computed the solution at time tévadalized by its
point—values{go?}, and have reconstructed the continuous piecewise linear interpolant,

(Ap)?

[
7’+2(X — Xj) l[XJ,X|+1]' (31)

H(x,t") = n
GOt =" lof + Ax

j
We now turn to evolve it in time. To begin with, we estimate the local speed of propagat
at the grid pointsx;: the upper bound (disregarding the direction of the propagation)
denoted byaj' and is given by
aj = max [H'(p)]. (3.2

= a
pe[@x (Xj +0,t"), ¢ (Xj —0,tM)]

Remark. In most practical applications, these local maximal speeds can be easily e
uated. For example, in the special case of convex Hamiltonian one finds that (3.2) red

to
n , (AQD)Til

In fact, the local speeds are already calculated towards the CFL nu@ﬂmm a?. We
emphasize that these local speeds are the only additional information required to mc
the LT scheme.

Our new scheme is constructed in two steps. First, we evolve in time the valyest of
the pointsx], andx!'_; see Fig. 3.1. Due to the finite speed of propagation these poin
X[\, 1= X; £ a] At, separate between smooth and nonsmooth regions, and hence the sol
remains smooth along(,, t) with t € [t", t"*+1]. Taylor expansion then yields

(Ap)" 4
‘P?Il = ¢(Xjz, t") — At H(A)iiz ) (3.4)
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FIG. 3.1. Modified central differencing.

where the corresponding values at tithere computed directly from the interpolant (3.1),
~-”—”:l:At“A” 3.5
P(Xj+, 1) = @] Baj( ?)ji1- (3.5)

Finally, the point-value of our approximation at;(t"*?) is obtained from the linear
interpolation betweem?f; i.e., noting thak; = %(XE‘Jr + x{_) we conclude with

1 At (Ap) 4 (Ap)?_,
1 1 1 i+ j
+ SAX Xa? ((p?+l — 2(,0? + (p?_l). (3.6)

This is ourfully discretefirst-order scheme. Lettingit | O yields the corresponding
semi-discretdirst-order scheme which reads

d . 1[, (A9 (Ag);_1(t)
a V=73 [H(T> * H(Tﬂ

+ 2AX

(@j+1(1) — 205 (V) + @j-1(1)), (3.7)
where thea; (t) are the maximal local speeds

aj(t) = max L (3.8)

pe[@x (xj+0,t),$x (X} —0,t)

associated with the piecewise linear interpolaéx, ), (3.1), reconstructed at tinte

Remarks. (1) Note that the fully discrete scheme, (3.6), is in fact the first-order forwa
Euler time differencing of the corresponding semi-discrete scheme, (3.7).
(2) The approach used here can be still viewed central differencing in the sense
no (approximate) Riemann solvers are involved. Consequently, we retain one of the r
advantages of the central schemes—simplicity. At the same time, we have gained sm
numerical viscosity which is, in the fully discrete case, proportion&@ {a x) as opposed
to the O((Ax)?/ At)-size numerical viscosity of the LxF scheme.
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4. THE ONE-DIMENSIONAL SECOND-ORDER SCHEME

We start again assuming that we have computed the solution at'tiffieen, to increase
the order of accuracy, we construct the continuous piecewise quadratic interpolant, (2

N (QD)TZ (Ag )]Jr2
‘/’j—i-T(X— iVt —5— 2(Ax)2

GOt =Y

j

(X = Xj)(X — Xj+l)] IR

The maximal local speed, is still given by (3.2); for example, in the convex case i
reduces to (compare with (3.3))

. " Qe (Ap)j,, il
a" = ma z . .
] + AX ¥ 2AX (4.1)

Similarly to the first-order scheme (Section 3), our new second-order scheme is ¢
structed in two steps.

1. Evolution. First, we compute the solution at the point§ = x; +aj'At using the
Taylor expansion op, which remains smooth alor@{, , t),t <t" + At,

O = G(Xj, tN) — At H (Gx (X1, 1)) + O(AD2. (4.2)

Here, the corresponding values @fafe computed directly from the piecewise quadrati
interpolant (2.1),

. rat(aal —1 At
P(xjx. 1) = ] £2a](Ag)],, + %(Aw,il, ri=i (43)
and similarly we obtain
Aol /1 (Mg, 4
(X ) = 5 (2 an) I 4.4
ATy E— ;(2 ,) - (4.4)

2. Projection. Consider the nonuniform grid, -- <x' <x{, <x{}; < ---}; and
the corresponding values of the computed approximate SOMQ@I&}. We “tie” a contin-
uous piecewise quadratic interpolant between these grid-values obtaining

POt =" {Qj () e

XX+
J

]+Q]+1(X)1[x+xj+l ]} (4-5)

Each quadratic par@; (x) or Qj+1/2(X), is of the form (2.1) and can be computed explicitly.
Since our main goal is to construct a semi-discrete scheme, we omit these details.

We note that the support 6F; (x) is of S|zexJJr x}‘f = O(At), and hence we can safely

replaceQ; (x) by its linear interpolant modulo a negligible local error of or@&nt)?, i.e.,

n+1 n+1
oI —el”
2al At

Qj(x) = ¢t + (x = x) + O(AD2. (4.6)
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Thus, we complete our fully discrete construction by inserkingx; into (4.5) and (4.6)
and using (4.2)—(4.3). the resulting scheme reads

n+1 _ ¢)(st tn+l) — ((p?i-l + @?i_l) + O(At)z

n )‘ai n n )‘ajn ()‘a? — 1) ’ /
=07+ 2L (05 — @)y ) + == (@), + (80 )

Azt [H(ox (X1, t") + H (o (X, t"))] + OaD?. (4.7)

The fully discrete scheme (4.7) is second-order in space and only first-order in time.
is attributed to the first-order forward Euler time differencing employed in (4.7), which v
abbreviate as

"t = " + AtC[e"].

To gain second-order accuracy in time, one may use a modified Euler method (see,
(25, 26)),

1

At
" ="+ AtClp n+2] "= "+ ?C[gon]. (4.8)

Yet a more compact and economical approach for higher accuracy in time would be b:
on adirect application of the semi-discrete form, associated with (4.7). Itis here that we
advantage of the semi-discrete form available for our new central scheme (as oppos
the LT central scheme). Thus, letting | 0in (4.7) and (4.4), we arrive at tisemi-discrete
second-order central schemehich takes the compact form,

d 1 _ J()

G910 =—3[H (o5 (1) + Hpg )] + == (¢; (1) — o5 (1)). (4.9)

Here,a; (1) is given by (3.8), and all the quantities on the right are attached to thexpgint
namely

(Ap)jss® (A9, (0

+ = D L4 =
Px (9] @x(xj 0,t) Ax AX

(4.10)

To achieve high-order accuracy in time, this semi-discrete scheme, (4.9)—(4.10) cal
integrated in time by an appropriate high-order ODE solver; for example, the second-o
modified Euler method (4.8) will do.

Remark. Ifwe setallthe numerical derivative(sz)go)/j+l (t), to be zero, our second-order
2
semi-discrete scheme, (4.9)—(4.10), reduces to the first-order scheme, (3.7), introduc
Section 3.

5. THE MULTIDIMENSIONAL SECOND-ORDER SCHEME

Without loss of generality, we restrict our attentiordte- 2 space dimensions, consider-
ing the HJ equation,

@t + H(px, py) = 0. (5.1)
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FIG.5.1. Two-dimensional central differencing.

Assume that at timé=t" the discrete approximation to the point-values of its solu
tion, {¢]  ~ p(Xj == J AX, Yk :=KkAy, t)}, has been already computed. We begin with th
reconstruction of a continuous, piecewise quadratic, two-dimensional interpolant in f
triangles (NW, NE, SW, and SE) around each grid-poix{, ¥«) (see Fig. 5.1). Such an
interpolant in the NE (NW) triangles is given by

(Ap)? 4 (Ap)", .,
~NE(NW _ j£i.k _ ikt
¢ >(x,Y)—w?,kJrT(x—xJ)JFA—y(y_yk)
(A‘P), 1 (A(p)\ s
Rk VX — X DS Do AV _
RTINS (X = X)) (X = Xj+1) + 2(Ay)2 Y = VO Y = Yis1)
(Ag); 1 A9
K+3 ]iz.k . _
2AXAY (X =X = Y, (5.2)

and in the SE (SW) triangles by

(Ap)T, (Ap)"
~SE(SW) _ j+1k _ jk—1
¢ (X, W—‘P?,k'i‘TZ(X—X,)—i-TZ(y—yk)
(A0)ji1 (Aw)‘j,k_%
W(x — X)X — Xj+1) + 2(Ty)2(y — VOV = Yke1)
(A§0)/j k1 + (Aga)\ 1
K—3 j£3.k . _
" 2AXAY (X =Xy = Y- (5.3)

Here and belowmA )], 12k = @] 1k — @)k (AP k12 =] 11 — @] k; and

(A@)] 1 (AP)] i3 (Ap) 41 NOI
(AX)2 AXAY AXAY (Ay)?

are approximations to the corresponding exact derivatives,

wxx(XH%, Yo i), exy(X;s yk+§7tn)’ ‘pXY(XjJr%v Yo t), eyy(X, yk+%7tn)7

which arereconstructedrom the computed differencééAp)]., 1 5, (A@)] 112} With the
help of a nonlinear limiter, e.g., the minmod limiter, (2.2)—(2.3), applied in an appropri
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direction. For instance, we compute

Ag) = minmod( 6 ( (Ag)" Agp)" L Ag)" Ag)"

( w)j+%’k_mlnmo ( 90)j+%,k+1_( (/))H’%,k ’E ( ‘P)H%’Hl_( </))j+%,k_1 s
o(@0),,, - (Aso),”ml)),

A@) = minmod( 6 ( (Ag)" Agp)" 1 Ag)" A)"

( (p)j’kJr:,zl_mlnmo ( ¢)j,k+g_( go)j,k-}—% 75 ( (p)Jk-i—%_( (/))Jk_% s

0(20), s - (A‘p)T,k%))‘

Other numerical derivatives can be approximated in a similar manner.

Next, we denote by?’k the maximal local speed of propagation at the grid-poijt i),
which is given by the maximal value over the squérg :={(X, y) € [Xj_1/2, Xj+1/2] X
[Vk-1/2, Yks1/2]}s

ajy = max| Hu(@x(X, ¥), §y(X, Y)I, [Hu(@x (X, ¥), @y (X, Y))I}. (5.4)

In practice, we used the maximal value over the four poixis,(yk+), see Fig. 5.1,

a?,k = mit’:D{\/ HZ2 4+ H2 | (@x(Xj+, Vi), Gy (Xj+, Yki))}7 (5.5)

sincey'is continuous at the neighborhood &f ( yi).

Equipped with the piecewise quadratic reconstruction, (5.2)—(5.3), and having the m
mal local speeds, (5.5), we now can compute the discrete point-values of the solution a
next time level. As in the one-dimensional case, our two-dimensional scheme is constru
in two steps.

1. Evolution. First, we note that due to the finite speed of propagation, the solution
(5.1) subject to the initial data, (5.2)—(5.3), prescribed at timé", is smooth around the
points &}, = X; £ a](At, Y, '= Yk = a]' (At); see Fig. 5.1. Therefore, the valuesft
at these four points can be computed by the Taylor expansion

M e = B(X]1 View t") — A H (G (X1, Y 1), @y (XNe, Ve 1)) +O(AD2. (5.6)

Here, by complete analogy with our one-dimensional construction, the valugsf,
Yke, ") are computed from the corresponding polynomials (5.2) or (5.3).¢je.x, =
PVEXG 10 Yo )s 90k = %5(Xj 4, Vo), and so on. Withi := At/Ax and p:= At/Ay
being the fixed mesh ratios, we obtain

/\a?,k(/\a?,k -1

Plaks = @k E 2 (AR, + nal(Ap)T 1 + >

2
\ )\,//L ank \
(AQ)| 4,3 + % (A0 4 + APy ) -
(5.7)

(B0) 4

paf (naly — 1)
t
ra) (a] ) — 1)

(P?i,k_ = (P?,k + )La?,k(Afﬂ)?i%,k - Ma?,k(Aw)T’k,% + >

(A(p)/jii_zl’k

2
paly (naly — 1) \ (@) \
+ D )]y F T (A0 (A0
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The derivatives on the RHS of (5.6) are computed by pluggifig, (v..) into the derivatives
of the corresponding polynomials (5.2),(5.3),

Ap)" Ao Aoy
Fx (Xl Vi 1) _ (1 .nk>(‘”)1i%~kﬂa_n (A9)kis
it Y U) = J

AX 2 A koA
+ paj (B9js i
LKA
- (Ap)iL1 1 (Acﬂ)Ji P (A<p)’j,k 1
¢(,i»yk— ) = Ax 5 ray Mk oAy
el (Ap)j L1y
- PEIkToAx
i / (5.8)
(AP)] s 1 (A@)j i1 (A@) 11
n
€0y( i+ Yito ) = Ay 2 — May g ik oA
(A@) .1,
+ pal J ,
Rk oAx
. (A‘/’)T,k 1 1 . (Ap)j 1 (Aw)/j’k 1
¢Y(inv Y- = Ay + 5 na; 1k oA
(Ag). .
j£3.k
+ ua;
Rk oAx

2. Projection. Finally, we project this computed solution back onto the original gric
Since the distance between the points §x) and ;. Vi) is proportional taO(At), we

obtain a sufficiently accurate approximationgox;, Yk, t"**) by averaging the values of

<p?l'1ki computed at the previous step, (5.6)—(5.8). The resulting fully discrete scheme,

n+1 _

¢l (‘/’Tilm oM e+ el ) + O(A)?

-bIH

na

. ((A<p>,+1k @7y, ((A O — (A9, y)

Aal ( a" —1)
j.k j.k / /
e ] (O (Asa),-_%,k)

pali(nafy — 1) | |
+ T (80)] s + (A0} )

At - -
= 2 22 H(@x (e Yo 1), By (X e 7)) + O(AD?, (5.9)
+

is second-order accurate in space and only first-order in time. We note that obtquj?ng
by averaging the intermediate valueﬁfki creates a negligible error of ordér(At)2.
Indeed, this deviation vanishes later on as we take the semi-discrete\liid.

As in the one-dimensional case, we now subtaft from both sides of (5.9), di-
vide by At, and pass to the limit aat — 0, obtaining thesecond-order, semi-discrete,
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two-dimensional, central scheme

d
dt‘ﬂ]k(t) ——[H(<p (1), 5 O)+FH (@ (1), oy (D) + H(gy (1), ¢y (1))
jk()

+ H(g (1, oy ()] + [(ex (O — o )+ (95 () — ¢y (1)]. (5.10)

Here, the local speea, k(t) is given by (5.5), and all the quantities on the right are attache
to the point §;, yk), namely

(A)j1i®)  (A9)ju, (O

o = gx(X; £0, Y, 1) =

AX N )Z‘Ax o (5.11)
(A@)j k1 (D) P e
+ o~ . jkt3 jkE3
oy = oy(Xj, Yk £0,t) = Ay ¥ oAy

Finally, to obtain the same second-order accuracy in time, our semi-discrete scheme, (5
(5.11), should be complemented with at least second-order method for time discretiza

6. NUMERICAL EXAMPLES

We conclude the paper with a number of numerical examples. The numerical experim
presented below are based on our second-order semi-discrete schemes—(4.9)—(4.1(
(5.10)—(5.11) in the one- and two-dimensional cases, complemented withdiagendent
limiter (2.2) withd = 2. The semi-discrete solution evolved in time using the second-ord
modified Euler method, computed with timest&p=0.475x Atcg., whereAtcg, is the
maximal timestep dictated by the CFL limitation.

6.1. One-dimensional Hamilton—Jacobi equation.

ExamMPLE 1. Burgers-type equation. First, consider the following periodic initial value
problem,

{<ﬂt + H(px) =0 (6.1)
¢(X, 0) = —cognx),
with a strictly convex (Burgers-type) Hamiltonian
Hep = P22 6.2)
or a non-convex Hamiltonian
H(p) = —cogp + 1). (6.3)

For both of these problems the singularity occurs at abeut/72. The approximate
solutions at time = 1.5/72, obtained by our second-order semi-discrete scheme, (4.¢
(4.10), are presented in Figs. 6.1-6.2. We observe both high-resolution and non-oscill
behavior of our one-dimensional scheme.
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08 T T T T T T T T T

EXACT SOLUTION —
N=40 x

0.6 B

0 02 04 0.6 08 1 1.2 14 1.6 1.8 2

FIG.6.1. Problem (6.1), (6.2).

ExamMPLE 2. Riemann problem. In this example we solve numerically the Riemantr
problem for a HJ equation with a non-convex Hamiltonian,

o+ 3(92—1) (92 —4) =0,
9(x, 0) = —2/x]|.

(6.4)

The numerical solution obtained by our second-order semi-discrete scheme is st
in Fig. 6.3. When the mesh is refined, this solution converges to the exact (viscos
solution much faster than the solution computed by the LT scheme (Fig. 6.4). This is
to the fact that our new scheme, (4.9)—(4.10), has smaller numerical dissipation thar

EXACT SOLUTION —
N=40 X i

. s L L 1
1} 0.2 04 0.6 08 1 i2 1.4 1.6 1.8

FIG. 6.2. Problem (6.1), (6.3).
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-t T T T REPIXF T T T
8 “z Kt EXACT —
N=20 o
ERE S ° ® N=40 + <
N=80 x
a2 b g
43 F J
14 b 4
st 4
16+ 4
art E
-18 b
a9 b 4
22 I 1 I i 1 £ t 1 1
-1 -0.8 -0.6 -04 -0.2 0 0.2 04 0.6 0.8 1

FIG. 6.3. Problem (6.4)T = 1. Resolution via the new second-order scheme, (4.9)—(4.10).

LT scheme, particularly in the regions whefg(¢y) « 1, i.e., near the maximum in this
example.

6.2. Two-dimensional problems.

ExamPLE 3. Two-dimensional Hamilton—Jacobi equationLet us consider the follow-
ing two-dimensional HJ equation with a convex Hamiltonian,

o+ /o2 +92+1=0, (6.5)

-1 T T

T T
SRR P ERERT
DO RN i EXACT —

Tt o o TP N=20 o
-1t + . o ¥ N=40 + -

. N N=80 x
1.2 e
-13 F 4
14 | |
as b -
-1.6 1
-1.7 e
18 B
-19 b

2 L L ' 1 1 L L . .

-1 0.8 -0.6 -0.4 -0.2 o 0.2 04 0.6 08 1

FIG. 6.4. Problem (6.4)T = 1. Resolution via the second order LT scheme, (2.6)—(2.7).
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FIG. 6.5. Problem (6.5)—(6.6), Mesh, 5360.

which is a prototype model in geometrical optics. We solve this eikonal equation subjec
the smooth periodic initial data,

e(X,y,0) = %(cos(an) — 1(cog2ry) — 1) — 1. (6.6)

The numerical solution to this Cauchy problem, (6.5)—(6.6), at tim®.6 (after forma-
tion of the singularity) was computed by our two-dimensional second-order semi-disci
scheme, (5.10)—(5.11). We would like to stress its non-oscillatory nature and high resolu
of the singularity; see Figs. 6.5, 6.6.

ExaMPLE 4. Incompressible Euler and Navier—Stokes equations.this example we
considertwo-dimensional viscous and inviscid incompressible flow governed by the Nav
Stokes ¢ > 0) and Euler ¢ = 0) equations, respectively,

ot + Uwy + voy = vAw. (6.7)

Here,u = (u, v) is the two-component divergence-free velocity field, satisfying

Ux + vy =0, (6.8)

= =)

FIG. 6.6. Problem (6.5)—(6.6), Mesh, 1¢a.00.
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and w :=wvy — Uy is the vorticity. This is a transport equation for the vorticity, which
can be viewed as a two-dimensional viscous HJ equation wigiolbal Hamiltonian,
H (wx, wy) :=Uwy + voy.

When applied to Eq. (6.7), our two-dimensional, second-order, semi-discrete sche
(5.10)—(5.11), takes the form

d 1
GO = SO @ O + 0 ) + v @) O + oy )]

dt
aj k()

T2

[(@) (1) — 0 (D) + (@] 1) — oy O)] +vLjk®).  (6.9)
Here, the local speed is given By (t) = ./uJ?.k(t) + vJ-Z’k(t), the derivatives on the right are

f(t)z(Aw)ji%,km <Aw>,-i%.k(t>’ wit:(Aw),,ki%m$<Aw>j,ki%<t>’
AX 2AX y Ay 2AY

(6.10)

w.

andL ; k(t) denotes the central difference approximation of the linear viscous term,

®j+1k(t) — 20j k(1) + wj_1 k(1) n wjk+1(t) — 20j k() + wjk-1(D)

LD = (Ax)2 (Ay)?

(6.11)

To complete the transport step (6.9), the incompressible computations require that at e
time step, one recovers the velociti¢s; , vj «}, from the known values of the vorticity,
{wj k}. This can be done in a variety of ways—consult [8, 12, 18] and the references the
for recent examples. Here we have used a stream-funatipsiich thatAy = —w, which
is obtained by solving the five-points Laplaciaw; x = —wj k(). Its gradientVy, then
recovers the velocity field,

Vikel — Vjk-1

_ Yipik — ¥i-1k
2AyY '

6.12
2AX ( )

ujk) = , vj k() =
Remark. Observe that in this way we retain the discrete incompressibility, namely t

velocities computed in (6.12) satisfy

Uj+1k — Uj-1k n Vjk+1l — Vj k-1

=0.
2AX 2Ay

We start our numerical experiments by checking the accuracy of our scheme, (6.9)—(6
We consider the Navier—Stokes equations, (6.7)—(6.8) witl0.05, subject to the smooth
periodic initial data,

u(x,y, 0) = —cosxsiny, v(X, Y, 0) = sinx cosy, (6.13)

which was used in [5], with exact solutiofy(x, y, t), v(x, y, t)) =& 2"'(—cosx siny,
sinx cosy).

The approximate solution with different number of grid points was computed at tir
t=2. The errors, measured in terms of vorticity in thé*-, L!-, and L?-norms are
shown in Table I. In this context we mention theé-convergence theory presented in
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TABLE |
Initial Value Problem (6.7)-(6.8), (6.13) =0.05

NX * Ny L>-error Rate Ll-error Rate L2-error Rate

32x32 3.140e-02 — 6.419e-01 — 1.125e-01 —

64+ 64 8.041e-03 1.97 1.473e-01 212 2.588e-02 2.12
128+128 4.459e-03 0.85 3.473e-02 2.08 6.261e-03 2.05
256x256 2.281e-03 0.97 8.313e-03 2.06 1.706e-03 1.88

Note.Errors atT = 2.

[19]. In [19] we advocated that it is thel-rather than the.*°-norm which reveals the
optimal convergence rate of second-order high-resolution schemes. The results re
firm this conclusion, by illustrating the-second-order accuracy of our new central H.
scheme.

The second-order semi-discrete scheme, (6.9)—(6.12), was implemented for a m
problem taken from [3, 4]. First, we solve the Euler equations, (6.7)—(6.8) wtlD,
subject to the (2, 2r)-periodic initial data,

tanh(J(y —7/2)), y <m,
uex,y,0) = v(X,Y,0) =6 - sin(x). (6.14)
tanf‘(%(Sn/z -y)., y>m,

Here, the “thick” shear-layer width parametgr= = and the perturbation parameter
§=0.05.

The numerical results with 64 64 and 128« 128 grids are presented using contou
plots of w in Figs. 6.7-6.8, and their corresponding two-dimensional configuration |
respectively, Figs. 6.9-6.10. Our results offer improved resolution when compared with
results of the corresponding fully discrete central scheme of Levy and Tadmor [18], whic

FIG. 6.7. Euler;T =10, 64x* 64 grid.
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N

-/,

=00\ /%

FIG. 6.8. Euler;T =10, 128« 128 grid.

based on theonservativdormulation of the inviscid vorticity equatio®; + V - (Uuw) = 0.
Indeed, the resolution of the second-order results in Figs. 6.7—6.10 lies in between
second- and third-order versions used in [18, Figs. 6.6—6.7] and Figs. 6.12—6.13].
improved resolution is attributed to the smaller amount of numerical dissipation preser
our scheme. This can be clearly seen when comparing the corresponding extrema veé
the maximal value of the solution computed by (6.9)—(6.12y4s8 (Fig. 6.10), which is
larger than the maximal value 6f2.8 due to the increased amount of dissipation prese
in the corresponding second-order Levy—Tadmor solution [18, Fig. 6.7]. At the same ti
we observe that the solution depicted in Figs. 6.8, 6.10 has spurious spikes, wherea
corresponding results in [18] are free of such oscillations. In this context we recall that
conservative solution satisfies a local maximum principle [18, Theorem 4.1], which hin
on an appropriate discrete incompressibility outlined in [18, 3.7]. A analogous discr

FIG. 6.9. Euler;T =10, 64x% 64 grid.
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FIG. 6.10. Euler;T =10, 128+ 128 grid.

incompressibility which would prevent the formation of spurious spikes is sought for ¢
central scheme.

Finally, we solve the Navier-Stokes (N-S) equations, (6.7)—(6.8) wit0.01, aug-
mented with the so called “thick” shear-layer periodic initial data, (6.14), with§(=
(7 /50, 0.05).

The numerical results at time=10 with different nhumbers of grid points are pre-
sented in Figs. 6.11-6.14. The smallest scale in the two-dimensional NS equations is ¢
by nmin~ +vV/llwolls), consult [11]. In the present cas@jmin~ v 38~102
so that the results in Figs. 6.11-6.12 with=64 andN = 128 grid points resolve the
solution.

\\_///

Y
//\\\\

J

)

FIG.6.11. N-S;T =10, 64x 64 grid.
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FIG. 6.12. N-S;T =10, 128+ 128 grid.

FIG. 6.13. N-S;T =10, 64x 64 grid.

FIG. 6.14. N-S;T =10, 128+ 128 grid.
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