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Abstract. We are concerned with 2 × 2 nonlinear relaxation systems of conservation laws of
the form ut + f(u)x = − 1

δ
S(u, v), vt = 1

δ
S(u, v) which are coupled through the stiff source term

1
δ
S(u, v). Such systems arise as prototype models for combustion, adsorption, etc. Here we study the

convergence of (u, v) ≡ (uδ , vδ) to its equilibrium state, (ū, v̄), governed by the limiting equations,
ūt + v̄t + f(ū)x = 0, S(ū, v̄) = 0. In particular, we provide sharp convergence rate estimates as the
relaxation parameter δ ↓ 0. The novelty of our approach is the use of a weak W−1(L1)-measure of
the error, which allows us to obtain sharp error estimates. It is shown that the error consists of an
initial contribution of size ||S(uδ

0, v
δ
0)||

L1 , together with accumulated relaxation error of order O(δ).
The sharpness of our results is found to be in complete agreement with the numerical experiments
reported in [Schroll, Tveito, and Winther, SIAM J. Numer. Anal., 34 (1997), pp. 1152–1166].
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1. Introduction. We are concerned with one-dimensional systems of conserva-
tion laws which are coupled through a stiff source term. The purpose of this paper is
to study a convergence rate of such systems to their equilibrium solutions as the stiff
relaxation parameter tends to zero.

Our system takes the form

ut + f(u)x = −1

δ
S(u, v),(1.1)

vt =
1

δ
S(u, v),(1.2)

where δ > 0 is the small relaxation parameter. The stiff source term, S(u, v), and the
convective flux, f(u), are assumed to be smooth functions. We consider the Cauchy
problem associated with (1.1)–(1.2), subject to periodic or compactly supported initial
data

u(x, 0) = u0(x), v(x, 0) = v0(x).(1.3)

Here u(x, t) := uδ(x, t), v(x, t) := vδ(x, t) is the unique entropy solution of (1.1)–
(1.3), which can be realized as the vanishing viscosity limit uδ = limν↓0 uδ,ν , vδ =
limν↓0 vδ,ν , where (uδ,ν , vδ,ν) is the solution of the regularized viscosity system

uδ,νt + f(uδ,ν)x = −1

δ
S(uδ,ν , vδ,ν) + νuδ,νxx ,(1.4)

vδ,νt =
1

δ
S(uδ,ν , vδ,ν).(1.5)
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This regularized system, with fixed δ > 0 (and ν > 0), admits a unique, global
(and, respectively, classical) solution. Indeed, such a solution can be constructed, for
example, by fixed point iterations which alternate between the solution of the ODE
(1.5) for v and the viscous conservation law—with v-dependent source term (1.4) for
u. Moreover, by the maximum principle, e.g., [PW], the solution constructed admits
a global uniform bound in view of our monotonicity assumption specified in section 2,
−Su, Sv ≤ 0. Finally, by standard arguments (which we omit), there exists a constant,
independent of ν, Cδ = exp{2(|Su| + |Sv|)t/δ}, such that

‖uδ1(·, t) − uδ2(·, t)‖L1 + ‖vδ1(·, t) − vδ2(·, t)‖L1

≤ Cδ
[

‖uδ1(·, 0) − uδ2(·, 0)‖L1 + ‖vδ1(·, 0) − vδ2(·, 0)‖L1

]

.

Consequently, the uniqueness of the viscous solution, uδ,ν , and hence the uniqueness
of its entropy limit BV-solution, uδ, then follow. We refer to, e.g., [HW], [Lu], and
[Le] for further discussions on the existence and uniqueness for various related models
of the above type.

Once we identify the unique entropy solution, (uδ, vδ), we seek its equilibrium
state as δ ↓ 0, (ū, v̄). Formally, our equilibrium solution is governed by the limit
system obtained by letting δ ↓ 0 in (1.1)–(1.2),

(ū+ v̄)t + f(ū)x = 0,(1.6)

S(ū, v̄) = 0.(1.7)

To obtain the limiting equation (1.6), add (1.2) to (1.1); to obtain the constraint
equation (1.7), multiply (1.2) by δ and pass to the formal limit as δ → 0.

The two main questions that we address in this paper are concerned with the
convergence of the entropy solution (uδ, vδ) to its expected equilibrium state (ū, v̄).

Convergence. We prove the convergence to the expected limits

ū = lim
δ,ν↓0

uδ,ν , v̄ = lim
δ,ν↓0

vδ,ν .(1.8)

Moreover, we provide the following.
Error estimates. We estimate the convergence rate as ν → 0 and, in particular,

as δ → 0.
Assume that Sv 6= 0 so we can solve the constraint equation (1.7) and obtain

its solution in the explicit form

v̄ = v(ū).(1.9)

Inserted into (1.6), we obtain that ū is governed by the limiting equation

[ū+ v(ū)]t + f(ū)x = 0.(1.10)

Equivalently, if we denote w̄ = w̄(ū) := ū+v(ū) and let its inverse1 ū = ū(w̄), then
we conclude that the limiting equation (1.10) can be rewritten as a single conservation
law, expressed in terms of the combined flux F (w̄) := f(ū(w̄)),

w̄t + F (w̄)x = 0.(1.11)

1 The inverse exists since by our monotonicity assumption in section 2 below, v′(u) = −Su/Sv >
−1.
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We obtain our convergence results under the assumptions of convexity—both
f(·) and F (·) and the monotonicity of S(u, v). In addition, we assume that we start
with “prepared” initial data, in the sense that u0 ≡ uδ0 and v0 ≡ vδ0 approach their
equilibrium state (1.7) as δ ↓ 0, i.e.,

||S(uδ0(x), v
δ
0(x))||L1(x)

δ→0−→ 0.

Specifically, we let ǫ = ǫ(δ) ↓ 0 denote the vanishing initial error

||S(uδ0(x), v
δ
0(x))||L1(x) ∼ ǫ(δ) ↓ 0.(1.12)

Equipped with these assumptions, we formulate in section 2 our main results,
which we summarize here in the following theorem.

Theorem 1.1 (main theorem). Consider the system (1.3)–(1.5) subject to W 2(L1)-
“prepared” initial data, (1.12). Then (uδ,ν , vδ,ν) converges to (ū, v̄) as ν → 0, δ → 0,
and the following error estimate holds ∀p, 1 ≤ p ≤ ∞:

||uδ,ν(·, t) − ū(·, t)||W s(Lp(x)) ≤ ConstT ·
(

ǫ(δ) + δ + ν
)

1−sp

2p , −1 ≤ s ≤ 1

p
.(1.13)

Thus, (1.13) reflects three sources for error accumulation: the initial error of
size ǫ(δ), the relaxation error of order δ, and the vanishing viscosity of order ν. For
example, in the inviscid case (ν = 0) and with “canonically prepared” initial data
such that ǫ(δ) ∼ δ, we set (s, p) = (0, 1) in (1.13) to conclude an L1-convergence
rate of order O(

√
δ); in fact, in Corollary 2.3 below we extend this L1-estimate to

the v-variable, stating that

||uδ(·, t) − ū(·, t)||L1 + ‖vδ(·, t) − v̄(·, t)‖L1 = O(
√
δ).(1.14)

The two-step proof of the main theorem is presented in sections 3 (stability) and 4
(consistency).

We close this introduction with three prototype examples.
Example 1: Combustion. We consider a combustion model proposed by Majda

[Ma]. This model was consequently studied in [Le], [TY], and [Lu]. It takes the form

ut + f(u)x =
1

δ
A(u)v + νuxx,

vt = −1

δ
A(u)v.(1.15)

Here u ≡ uδ,ν is a lumped variable representing some features of density, velocity,
and temperature, while v ≡ vδ,ν ≥ 0 represents the mass fraction of unburnt gas in
a simplified kinetics scheme; 1

δ is the rate of reaction and the parameter ν > 0 is a
lumped parameter representing the effects of diffusion and heat conduction.

In this model, S(u, v) = −A(u)v and our convexity and monotonicity assump-
tions (2.1)–(2.3) below hold, provided that

A′(u) < 0, A(u) ≥ η > 0; f ′′(u) ≥ α > 0.(1.16)

The limiting equation (1.10) in this example reads

ūt + f(ū)x = 0,
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and hence uδ,ν − ū satisfies the error estimate (1.13).
Example 2: Adsorption. We consider the following stiff system:

ut + f(u)x = −1

δ
(A(u) − v),

vt =
1

δ
(A(u) − v).(1.17)

In this example u ≡ uδ denotes the density of some species contained in a fluid
flowing through a fixed bed, and v ≡ vδ denotes the density of the species adsorbed
on the material in the bed; δ > 0 is referred to as the relaxation time. Different
forms of adsorption functions, A(u), are discussed in [STW], [TW1], [TW2], and the
references therein.

The source term associated with this adsorption model, S(u, v) = A(u)−v, yields
a limiting equation of the form

[ū+A(ū)]t + f(ū)x = 0.

Under the monotonicity assumption and convexity condition (consult (2.1)–(2.3)),

A′(u) ≥ 0,

[

f ′(u)

1 +A′(u)

]′
≥ α > 0.(1.18)

We conclude the error estimate (1.13) with ν = 0. In particular, for “canonically
prepared” initial data such that ||A(uδ0) − vδ0||L1 = O(δ), (1.14) yields a convergence

rate of order O(
√
δ).

In this context it is interesting to contrast our above error estimates with those of
[STW]. In [STW], Schroll, Tveito, and Winther studied the error estimates for the ad-
sorption model (1.17) subject to “canonically prepared” initial data, ||A(uδ0) − vδ0||L1 =

O(δ), and concluded an L1-convergence rate of order O(δ
1
3 ). Their reported numer-

ical experiments, however, indicate a faster convergence rate of order O(
√
δ). Our

results, e.g., (1.14), apply to their numerical experiments and confirm this optimal

O(
√
δ) convergence rate. It should be pointed that the O(δ

1
3 ) error estimate in [STW]

was derived by interpolation between L2- and L1-error bounds. It is here that we take
advantage of our sharper interpolation between the weaker O(δ) Lip′- and the O(1)
BV -bounds. This enables us to improve over [STW] in both simplicity and generality
and conclude with the sharper estimate of order O(

√
δ).

Example 3: Relaxation. Let us consider the following semilinear stiff system (see,
e.g., [JX], [Li]):

ut + vx = 0,

vt + aux =
1

δ
S(u, v),(1.19)

where S(u, v) := f(u) − v and a is given positive number. The limiting equation,
with v(u) = f(u), is then

ūt + f(ū)x = 0.

To study this system we rewrite it in the form of (1.1)–(1.2) by means of two
changes of variables. First, we define the characteristic variables w :=

√
a u+v, z :=
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√
a u− v. The system (1.19) then takes the form

zt −
√
a zx = −1

δ
S(z, w),

wt +
√
awx =

1

δ
S(z, w),(1.20)

with S(z, w) = S(u(z, w), v(z, w)). Next, we make the second change of variables,
x′ := x−√

a t, obtaining

zt − 2
√
a zx′ = −1

δ
S(z, w),

wt =
1

δ
S(z, w).(1.21)

In this model, the flux is linear and hence our first convexity assumption, (2.2),
holds. The second one, (2.3), is satisfied for convex f ’s. In addition, the monotonicity
of S, Sz ≥ 0, Sw ≤ −η < 0, amounts (in terms of Su and Sv) to the inequalities

Sv ≤ −η < 0, Sv
√
a ≤ Su ≤ −Sv

√
a.

Thus, S(u, v) = f(u)− v should satisfy Liu’s subcharacteristic condition (e.g., [Li]),

−
√
a ≤ f ′(u) ≤

√
a.

In this case, our main theorem with p = 1, for example, yields

||uδ − ū||W s(L1) = Const ·
(

||f(uδ0) − vδ0||L1 + δ
)

1−s
2

, −1 ≤ s ≤ 1.

2. Statement of main results. We seek the behavior of the solution of regu-
larized system (1.4)–(1.5) towards the limit solution as δ → 0, as well as ν → 0.
Throughout this section we make the following two main assumptions.

Monotonicity. S(u, v) is monotonic with respect to u and strictly monotonic with
respect to v,

Su(u, v) ≥ 0, Sv(u, v) ≤ −η < 0.(2.1)

Convexity. f(·) is convex and F (·) is a strictly convex function,

f ′′(u) ≥ 0,(2.2)

F ′′(w) ≥ α > 0 ⇐⇒
(

f ′(ū)

1 + v′(ū)

)′

≥ α > 0.(2.3)

Remark. Our first assumption of monotonicity guarantees, by the classical maxi-
mum principle (see, e.g., [PW]), the L∞-boundedness of (uδ,ν , vδ,ν) (proof is left to
the reader).

Equipped with the two assumptions above, we now turn to the main result of
this paper. To this end, our error estimate is formulated in terms of the weak Lip′-
(semi)norm, || · ||Lip′ , and the dual of the Lip-norm given by

||φ||Lip′ := sup
ψ

[(φ− φ̂0, ψ)/||ψ||W 1,∞ ], φ̂0 :=

∫

suppφ

φ.
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Thus, the Lip′-size of regular φ’s (with bounded average over their finite support)
amounts to their W−1(L1)-size or, equivalently, the L1-size of their primitive. As we
shall see, such weak (semi)norm has the advantage of providing us with sharp error
estimates which, in turn, will be converted into strong ones.

Theorem 2.1. Consider the system (1.3)–(1.5) subject to W 2(L1)-“prepared”
initial data, (1.12). Then (uδ,ǫ, vδ,ǫ) converges to (ū, v̄) as δ → 0, ν → 0, and the
following error estimate holds:

||uδ,ν(·, T ) − ū(·, T )||Lip′(x) ≤ ConstT ·
(

ǫ(δ) + δ + ν
)

.(2.4)

Let us consider the particular inviscid case, where ν = 0. Then the entropy
solution of the stiff system (1.1)–(1.2), (uδ, vδ), converges as δ → 0 to its equilibrium
solution, (ū, v̄), and we obtain the asserted convergence rate in terms of the initial
error ǫ(δ) and the vanishing relaxation parameter δ:

||uδ(·, T ) − ū(·, T )||Lip′(x) ≤ ConstT ·
(

ǫ(δ) + δ
)

.(2.5)

Remarks. 1. Our assumption of “prepared” initial data means that at the

initial moment, ||S(uδ0, v
δ
0)||L1

δ→0−→ 0. In section 4 we will show that, in fact,

||S(uδ,ν , vδ,ν)||L1

δ→0−→ 0 for all t > 0.
2. What about “nonprepared” initial data? In this case the initial layer formed

persists in time; i.e., the initial error propagates and prevents convergence of uδ,ν , vδ,ν

to their equilibrium state.
The proof of the main theorem will be given in sections 3 and 4. To obtain this

result we utilize the framework of Tadmor and Nessyahu [Ta], [NT]. To this end, we
need the two ingredients of consistency and stability. Here, consistency—evaluated in
terms of the Lip′-norm—measures by how much the approximate pair (uδ,ν , v(uδ,ν))
fails to satisfy the limiting equation (1.10); stability requires the Lip+-stability 2 of
uδ,ν ; that is, we seek a one-sided Lipschitz continuity (OSLC) of the viscosity solution
uδ,ν ,

‖uδ,ν(·, t)‖Lip+(x) := sup
x

[uδ,νx (x, t)]+ ≤ Ct · ‖uδ,ν(·, 0)‖Lip+(x).(2.6)

By interpolation between the (weak) Lip′-error estimate (2.4) and the (strong)
BV -boundedness of the error (which follows from the Lip+-boundedness due to (2.6)),
we are able to convert the weak error estimate stated in Theorem 2.1 into a strong
one. As in [NT], we conclude with the following corollary.

Corollary 2.2 (global estimate). Consider the inviscid problem (1.1)–(1.3),
(1.12). Then the following convergence rate estimate holds:

||uδ(x, T ) − ū(x, T )||Lp ≤ ConstT · (ǫ(δ) + δ)
1
2p , 1 ≤ p ≤ ∞.(2.7)

Remark. The above-mentioned Lp-estimates in (2.7) are, in fact, particular cases
of the more general error estimate in the W s(Lp)-norm

||uδ(x, T ) − ū(x, T )||W s(Lp) ≤ ConstT · (ǫ(δ) + δ)
1−sp

2p , −1 ≤ s ≤ 1

p
.(2.8)

2 Here ||φ||Lip+ := ess supx6=y

[

φ(x)−φ(y)
x−y

]

+
, where, as usual, (·)+ denotes the “positive part of.”

For convenience we shall use the equivalent definition of the Lip+ norm: ||φ||Lip+ := supx [φ′(x)]+,

where the derivative of φ is taken in the distribution sense.
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The special cases, (s, p) = (−1, 1) and s = 0, correspond, respectively, to the weak
Lip′-estimate (Theorem 2.1) and the global Lp-estimate (Corollary 2.2).

Taking p = 1 in (2.7), we obtain, in particular, the L1-error estimate, which
reads

||uδ(x, T ) − ū(x, T )||L1 ≤ ConstT ·
√

ǫ(δ) + δ.(2.9)

In this L1-framework, we are able to extend the last estimate and obtain the same
O(
√

ǫ(δ) + δ) convergence rate of vδ towards v̄. This brings us to the following
corollary.

Corollary 2.3 (L1-error estimate). Consider the system (1.1)–(1.3) subject to
“prepared” initial data, (1.12). Then we have

||uδ(x, T ) − ū(x, T )||L1 + ||vδ(x, T ) − v̄(x, T )||L1 ≤ ConstT ·
√

ǫ(δ) + δ.(2.10)

In particular, for “canonically prepared” initial data, ||S(uδ0, v
δ
0)||L1 = ǫ(δ) ∼ δ, we

obtain a convergence rate of order
√
δ,

||uδ(x, T ) − ū(x, T )||L1 + ||vδ(x, T ) − v̄(x, T )||L1 ≤ ConstT ·
√
δ.(2.11)

Proof. We first note that due to the strict monotonicity of S(u, v) with respect
to its second argument and the L∞-bound of uδ, vδ, ū, and v̄, we have

|vδ − v̄| = |vδ − v(uδ) + v(uδ) − v̄| ≤ |vδ − v(vδ)| + |v(vδ) − v̄|

= |v′(ũ)| · |uδ − ū| +
∣

∣

∣

∣

S(uδ, vδ) − S(uδ, v(uδ))

Sv(uδ, ṽ)

∣

∣

∣

∣

∼ |uδ − ū| + |S(uδ, vδ)|.

Here ũ and ṽ are appropriate midvalues, ũ = θ1u
δ + (1− θ1)ū, ṽ = θ2v

δ + (1− θ2)v̄.
And we now obtain the desired estimate, (2.10),

||vδ(x, T ) − v̄(x, T )||L1 ≤ ConstT · (||uδ(x, T ) − ū(x, T )||L1

+||S(uδ(x, T ), vδ(x, T ))||L1)

= O(
√

ǫ(δ) + δ) + O(ǫ(δ) + δ) = O(
√

ǫ(δ) + δ).(2.12)

Indeed, the first O(
√•)-upperbound on the right is due to (2.9); the second upper-

bound, ||S(uδ(x, T ), vδ(x, T ))||L1 = O(ǫ(δ)+ δ), is outlined in section 4 below.
Finally, arguing along the lines of [NT; Corollary 2.4], we also obtain the pointwise

convergence towards the equilibrium solution away from discontinuities.
Corollary 2.4 (local estimate). Consider the inviscid problem (1.1)–(1.3),

(1.12). Then the following estimate holds:

|uδ(x, T ) − ū(x, T )| ≤ Constx,T · (ǫ(δ) + δ)
1
3 .(2.13)

Here, Constx,T is a constant which measures the local smoothness of u(·, T ) in the
small neighborhood of x,

Constx,T ∼ 1 + max
|y−x|< 3√

δ
|ūx(y, T )|.

.
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3. Lip+-stability estimate. We now turn to the proof of our main theorem.
We begin with the Lip+-stability of the solution of (1.4)–(1.5).

Assertion 3.1. Consider the system (1.4), (1.5) subject to Lip+-bounded initial
data (1.3). Then there exists a constant (which may depend on the initial data) such
that

||uδ,ν(·, T )||Lip+(x) ≤ Const.(3.1)

Proof. The proof is based on the maximum principle for (uδ,νx )+.
Differentiation of (1.4) and (1.5) with respect to x implies

(uδ,νx )t + f ′′(uδ,ν)(uδ,νx )2 + f ′(uδ,ν)(uδ,νx )x = −1

δ
[Suu

δ,ν
x + Svv

δ,ν
x ] + ν(uδ,νx )xx,(3.2)

(vδ,νx )t =
1

δ
[Suu

δ,ν
x + Svv

δ,ν
x ].(3.3)

We now multiply (3.2) by
1+sgn(uδ,ν

x )
2 ; using the monotonicity of S(u, v) and convexity

of f(u) we obtain the following inequalities:

[(uδ,νx )+]
t
+ f ′(uδ,ν) · [(uδ,νx )+]

x

≤ −1

δ

[

Su(u
δ,ν
x )+ + Svv

δ,ν
x

(

1 + sgn(uδ,νx )

2

)]

+ ν[(uδ,νx )+]
xx
,(3.4)

(vδ,νx )t ≤
1

δ
[Su(u

δ,ν
x )+ + Svv

δ,ν
x ].(3.5)

By solving the second inequality, we find (with Sv(τ) := Sv(x, τ) ≡ Sv(u
δ,ν(x, τ),

vδ,ν(x, τ)) and B(t) :=
∫ t

0
Sv(τ)dτ) that

vδ,νx (t) ≤ e
B(t)

δ vδ,νx (0) +
1

δ

t
∫

0

e
B(t)−B(τ)

δ Su(τ)(u
δ,ν
x (τ))+dτ.(3.6)

Plugging this into (3.4) and denoting m(t) = max
x

(uδ,νx (x, t))+, we end up with

ṁ(t) ≤ −Su(t)
δ

m(t) − Sv(t)

δ
e

B(t)
δ (vδ,νx (0))+ − Sv(t)

δ2

t
∫

0

e
B(t)−B(τ)

δ Su(τ)m(τ)dτ.(3.7)

The first and the third terms in the right-hand side of (3.7) add up to a perfect
derivative, modulo extra terms which are differentiated along the characteristics where
uδ,vxx (x(t), t) = 0 so that

ṁ(t) ≤
(

−e
B(t)

δ (vδ,νx (0))+

)

t

− 1

δ

(

t
∫

0

e
B(t)−B(τ)

δ Su(τ)m(τ)dτ

)

t

+ k(t).(3.8)

Here the constant k(t) (depending on the convexity constant of F in (2.3), α) is an
upperbound on the extra terms differentiated along the characteristics, e.g.,
∂xB(x, t)ẋeB(t)/δ(uδ,vx (0))+/δ . . . . Integration of (3.8) over (0, T ) yields

m(T ) ≤ m(0)+(vδ,νx (0))+

[

1−e
B(T )

δ

]

− 1

δ

T
∫

0

e
B(T )−B(τ)

δ Su(τ)m(τ)dτ+

T
∫

0

k(τ)dτ.(3.9)
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In view of the positivity of Su, we obtain that

(uδ,νx (x, T ))+ ≤ (uδ,νx (x, 0))+ + (vδ,νx (x, 0))+ +KT , KT =

T
∫

0

k(τ)dτ,

and the assertion follows with Const = ||uδ,ν(·, 0)||Lip+(x) + ||vδ,ν(·, 0)||Lip+(x)

+KT .
We close this section by noting that the proof of Assertion 3.1 is based on the

straightforward, formal maximum principle for the positive part of uδ,ν ; alternatively,
it could be justified, for example, by Lp iterations in (3.4).

4. Lip’-consistency and proof of the main result. In this section we prove
the promised error estimate (2.4) in the Lip′-norm. According to the results of [Ta],
[NT], the error ||uδ,ν − ū||Lip′ is upper bounded by the truncation error

∣

∣

∣

∣

∣

∣
[uδ,ν + v(uδ,ν)]t + f(uδ,ν)x

∣

∣

∣

∣

∣

∣

Lip′(x,t)
.(4.1)

This quantity measures by how much uδ,ν fails to satisfy the limiting equation (1.10).
To complete this proof we have to show, therefore, that the truncation error is of
order O(ǫ(δ) + δ + ν). We proceed as follows.

Adding the two components of the regularized system (1.5) to (1.4), we obtain
that

uδ,νt + vδ,νt + f(uδ,ν)x = νuδ,νxx ,

which we rewrite as

∗[uδ,ν + v(uδ,ν)]t + f(uδ,ν)x = uδ,νt + vδ,νt + f(uδ,ν)x
+[v(uδ,ν) − vδ,ν ]t = νuδ,νxx + [v(uδ,ν) − vδ,ν ]t.

It is here that we take advantage of the weak Lip′-norm introduced earlier in section
2: by measuring the L1-size of its primitive, the right-hand side of the last equality
tells us that the truncation error in (4.1) does not exceed

||νuδ,νxx + [v(uδ,ν) − vδ,ν ]t||Lip′(x,t)
≤ ConstT ·

[

ν||uδ,νx ||L1(x,t) + ||v(uδ,ν) − vδ,ν ||L1(x,t)

]

=: ConstT ·
[

I + II
]

.(4.2)

We proceed with estimating the two terms on the right. First, since uδ,ν is
Lip+-bounded, (3.1), it has a bounded variation, ||uδ,νx ||L1(x,t) ≤ CK (where CK

may depend on the Lip+-bound, K, and the finite support of uδ,ν) and, therefore,
I ≤ O(ν). Next, we find that the second term, II, is of order

II ≡ ||v(uδ,ν) − vδ,ν ||L1(x,t) ∼ ||S(uδ,ν , vδ,ν)||L1(x,t).(4.3)

Indeed, since 0 < η ≤ −Sv ≤ Const, we have

1

η
≤ |v(uδ,ν) − vδ,ν |

|S(uδ,ν , v(uδ,ν)) − S(uδ,ν , vδ,ν)| ≤ Const
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and, hence, |v(uδ,ν) − vδ,ν | ∼ |S(uδ,ν , v(uδ,ν)) − S(uδ,ν , vδ,ν)| = |S(uδ,ν , vδ,ν)|, and
(4.3) follows. Returning to (4.2) we find that

||νuδ,νxx + [v(uδ,ν) − vδ,ν ]t||Lip′(x,t) ≤ ConstT ·
[

I + II
]

≤ ConstT ·
[

ν + ||S(uδ,ν , vδ,ν)||L1(x,t)

]

.(4.4)

To conclude with the promised O(ǫ(δ) + δ + ν)-bound, it remains to prove that

||S(uδ,ν , vδ,ν)||L1(x,t)—or, utilizing (4.3), that δ||vδ,νt (·, t)||L1(x) is of order O(ǫ(δ)+δ),

||S(uδ,ν(·, t), vδ,ν(·, t))||L1(x) ≡ δ||vδ,νt (·, t)||L1(x) = O(ǫ(δ) + δ).(4.5)

To achieve such an estimate, we differentiate (1.4) with respect to t, multiply by

sgn(uδ,νt ), and obtain

|uδ,νt |t + (f ′(uδ,ν)uδ,νt )xsgn(uδ,νt ) = −1

δ

(

Su|uδ,νt | + Sv|vδ,νt |sgn(uδ,νt )sgn(vδ,νt )
)

+ǫ(uδ,νt )xxsgn(uδ,νt ).(4.6)

The same treatment of equation (1.5) yields

|vδ,νt |t =
1

δ

(

Su|uδ,νt |sgn(uδ,νt )sgn(vδ,νt ) + Sv|vδ,νt |
)

.(4.7)

Next, we integrate the following equations with respect to x:

d

dt
||uδ,νt ||L1(x) ≤ −1

δ

(

∫

x

Su|uδ,νt |dx+

∫

x

Sv|vδ,νt |sgn(uδ,νt )sgn(vδ,νt )dx

)

,(4.8)

d

dt
||vδ,νt ||L1(x) ≤

1

δ

(

∫

x

Su|uδ,νt |sgn(uδ,νt )sgn(vδ,νt )dx+

∫

x

Sv|vδ,νt |dx
)

.(4.9)

Finally, we add up (4.8) and (4.9), obtaining

d

dt

[

||uδ,νt ||L1(x) + ||vδ,νt ||L1(x)

]

≤ 1

δ

[

∫

x

Su|uδ,νt |
(

sgn(uδ,νt )sgn(vδ,νt ) − 1
)

dx

+

∫

x

Sv|vδ,νt |
(

1 − sgn(uδ,νt )sgn(vδ,νt )
)

dx

]

≤ 0.

It follows that

||uδ,νt (·, t)||L1(x) + ||vδ,νt (·, t)||L1(x) ≤ ||uδ,νt (·, 0)||L1(x) + ||vδ,νt (·, 0)||L1(x)(4.10)

and, in particular,

δ||vδ,νt (·, t)||L1(x) ≤ δ||uδ,νt (·, 0)||L1(x) + δ||vδ,νt (·, 0)||L1(x).

To conclude this proof, we show that the upper bound on the right does not exceed the
promised O(ǫ(δ)+δ). Indeed, by equations (1.4)–(1.5), uδ,νt = −vδ,νt −f(uδ,ν)x+νuδ,νxx ,
and hence

δ||uδ,νt (·, 0)||L1(x) + δ||vδ,νt (·, 0)||L1(x) ≤ 2||S(uδ,ν(·, 0), vδ,ν(·, 0))||L1(x)

+δ||f(uδ,ν(·, 0))x||L1(x) + δν||uδ,νxx (·, 0)||L1(x).
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The three terms on the right are upper-bounded by O(ǫ(δ)+ δ) since, by our assump-
tion of the “prepared” initial data (1.12), ||S(uδ,ν(·, 0), vδ,ν(·, 0))||L1(x) = O(ǫ(δ)); the

BV-boundedness of uδ,ν yields δ||f(uδ,ν(·, 0))x||L1(x) = O(δ) and, finally, since the ini-

tial data are assumed to be in W 2(L1), then δν||uδ,νxx (·, 0)||L1(x) = O(δν) << O(δ).
This completes the proof of Theorem 2.1.

Remark. We close by noting that the W 2(L1)-regularity of initial data used in
the last stage of the proof can be relaxed. In fact, it is sufficient to assume ||u0x||L1 +
ν||u0xx||L1 ≤ Const.

Note added in proof. We thank Professor R. Natalini for pointing out a gap
in the previous version of the proof of Assertion 3.1. Details will appear elsewhere.
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