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Abstract

We develop new hybrid numerical algorithms for compressible multicomponent fluids
problem. The fluid components are assumed to be immiscible and are separated by material
interface. We track the location of the interface using the level set approach and replace
the energy equation in the original model with the corresponding pressure equation in its
neighborhoods. In these neighboring areas we solve the resulting nonconservative system
using a path-conservative central-upwind scheme, while in the rest of the computational do-
main, a central-upwind scheme is used to numerically solve the original conservative system.
We first develop a finite-volume method of the second order and then extend it to the fifth
order via the finite-difference alternative WENO (A-WENO) framework. In order to reduce
oscillations, we switch from A-WENO back to second-order central-upwind scheme in certain
nonsmooth parts of the computational solution. We illustrate the performance of the new hy-
brid methods on a number of one- and two-dimensional examples including the shock-bubble
interaction tests.

Key words: path-conservative scheme, central-upwind scheme, compressible multifluids, pressure

evolution model.
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1 Introduction

In this paper, we develop a new numerical method for multifluids, which are assumed to be
immiscible and compressible. Assuming that all fluid components can be described by a single
velocity and a single pressure, the governing equations in the two-dimensional (2-D) read as:

pt + (pu)z + (pv)y =0,

(pu)e + (pu® 4 p)e + (puv)y, =0,
(pv): + (puv)e + (pv® + p)y =0,

E; + [u(E +p)], + [v(E +p)], = 0.
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Here, x and y are spatial variables, t is time and p(x,y,t), u(x,y,t), v(z,y,t) and E(x,y,t) are
the density, x- and y-velocities, and total energy, respectively. The system is completed through
the following equations of state (EOS) for each of the fluid components:

p=(r=1|E =L +v)] - pn. (15)
where the parameters v and p., represent the specific heat ratios and the stiffness parameters,
respectively, with p,, = 0 corresponding to the ideal gas case. In this paper, we consider a
multifluid problem with two components and assume that v = 77, Do = Do and v = i,
Doo = Poo,r1 for the first and second fluid components, respectively.

For multifluid problems, the fluid components are usually identified by the variable ¢, which
can be taken as a state variable, such as the specific heat ratio v (or any function of it), or the
mass fraction of the fluid component in the fluid mixture, or a level- set function whose zero
level-set defines the interface between the fluid components; see [1,2,11,25,30]. In all of the cases,
¢ propagates with the fluid velocity satisfying the equation

th + U(bm + U(by = 07 (16>

which may be combined with the first equation in (1.1) and recast in the conservation form:

(p9): + (pud). + (pvo), = 0. (1.7)

The resulting system (1.1)-(1.5), (1.7) is a system of hyperbolic conservation laws, whose
solutions are expected to develop complicated nonlinear wave structures that may include shocks,
rarefactions and contact discontinuities. Computing such solutions numerically requires the use
of high-resolution shock-capturing numerical methods with finite-volume (FV) schemes being a
popular choice; see, e.g., the monographs [16, 21, 34] and references therein. It is well-known,
however, that applying single fluid FV methods to the multifluid system (1.1)—(1.5), (1.7) may
lead to significant pressure and velocity oscillations, which typically originate near the material
interface and then spread all over the computational domain; see, e.g., [1,19]. This happens since in
the cells where the interface is located the fluids are artificially mixed, with the mixed cell average
values often being nonphysical. Therefore, one needs to design special multifluid algorithms.

A number of FV methods solving compressible multifluids problems were proposed. When
the interface is tracked using a FV approach to solve either (1.6) or (1.7), one can only obtain
the information about a set of cells, in which the interface is located. In this situation, one
may need to consider cells occupied by different fluids—the so-called “mixed” cells. There were
attempts to derive special equations of state for the “mixed” cells using either + or mass fraction
values obtained from either (1.6) or (1.7); see, e.g., [3,32]. This technique, however, has several
limitations and may lead to nonphysical jumps near the material fronts. A more accurate “mixed”
cell information can be obtained by considering the so-called five-equation models [4,6], in which
the continuity equation (1.1) is replaced with the corresponding equation for each fluid fraction. A
simpler and fully conservative method was developed in [31], where the pressure and velocity kept
constant across the material interface. This approach is very robust for tracking contact waves but
may suffer obvious drawbacks when strong shocks pass through the fluid interface. An alternative
way of treating multifluids was introduced in [2,11]. The material interface was placed not inside
a cell but at a cell interface at which two sets of fluxes are computed using the extrapolation of
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the material data across the interface, which results in nonconservative ghost fluid methods, which
are capable of accurately tracking the material interface.

A different interface tracking method, which is also capable of sharply resolving contact waves
at material interfaces, was introduced in [8]; see also [37]. There, the unreliable “mixed” cell
data have never been never used. Instead the reliable single fluid data from the both sides of the
interface is used to interpolate the missing “mixed” cell information. The interpolation is carried
out in the phase space by solving the corresponding Riemann problem; see [8] for details. It is
worth pointing out that while the ghost fluid and interface tracking methods are very robust in the
one-dimensional (1-D) case, their extensions to multidimensional problems are rather cumbersome.
For high-order WENO schemes for compressible multifluids, we refer the reader to [10,15,18,27,28|.

In this paper, our primary objective is to develop a robust and highly accurate hybrid algorithm
based on switching between the pressure and energy equations. Following the idea in [19], we use
the level-set function (1.7) to identify the “mixed” cells, in which we replace the conservative
energy equation with the nonconservative pressure one. We carefully derive the pressure equation,
which in the multifluid case contains the nonconservative term responsible for the jumps in fluid
parameters across the material interface. The obtained nonconservative system is then solved in
the “mixed” cells using the path-conservative central upwind (PCCU) scheme introduced in [5]. In
the rest of the computational domain, we solve the original conservative system (1.1)—(1.5), (1.7)
using the central-upwind (CU) scheme from [7,20]. Our method is first designed in the 1-D case and
then easily extended to the 2-D case with the PCCU method applied in a component-wise manner.
We also extend the proposed hybrid algorithm to higher order using the framework of the fifth-order
finite-difference alternative WENO (A-WENO) schemes developed in [17,23,24,35,36]. To this
end, we use the A-WENO scheme with the CU fluxes to solve the original conservative system
away from material interfaces and the path-conservative A-WENO schemes, recently proposed
in [9], to solve the nonconservative system near the material interfaces.

The paper is organized as follows. In §2, we describe the proposed hybrid multifluid algorithms.
We first present the 1-D algorithm in §2.1, and then extend it to the 2-D case in §2.2. In §3, we
present both the 1-D (§3.1) and 2-D (§3.2) numerical results.

2 Hybrid Multifluid Algorithms

We now present the new hybrid multifluid algorithms based on the CU and PCCU schemes.

2.1 One-Dimensional Algorithm
We begin with the 1-D Euler equations of gas dynamics,
pt+ (pu), =0, (2.1)

(pu): + (pu® +p)a = 0,
By + [u(E +p)], =0,

combined with the EOS .
p=(—-1) [E - §pu2} — VPoos (2.4)

and the equation
(p9): + (pud), = 0, (2.5)
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where ¢ is the level-set function used to determine the position of the interface.
We consider the 1-D system (2.1)-(2.5) in a computational domain covered with the uniform
cells Cj := [x; 1,7, 1] of size Az centered at x; = (z;_1 +z;,1)/2. We denote by U(t) the cell
2 2 2

1
2
,t) over the corresponding intervals Cj:

averages of U (-

1
Uj(t) =~ A—x/U(fﬂ,t) diL’,
Cj

where U := (p, pu, E, p$)" is a vector of conservative variables. Assuming that the cell average
values { U} are available at a certain time ¢ > 0, we compute the point values ¢; = (p¢),/ p; and
the corresponding values of v and p,, at the center of each cell:

I, 1f¢>07 pOO,I7 1f¢>07
V= { ! (Poc)j = { ’ (2.6)

11, otherwise, DPoo,11, Otherwise.

For the simplicity of presentation, we assume that there is only one material interface present in
the computational domain and we use the point values ¢;(t) to determine its location at each time
level, that is, we set that the material interface is located in either C'; or Cy 1, if ¢ (t)-¢s41(t) < 0.
Cells C'y and Cj4; are referred to as the interface cells, for which we follow the hybrid approach
introduced in [19] and replace the energy equation (2.3) with the pressure one:

pr+ (up)e = — [(v — 1P + VPoo] s (2.7)

The case of a larger, but finite number of interfaces can be treated similarly. Notice that all of
the indexed quantities depend on ¢, but from now on we will omit this dependence for the sake of
brevity.

The proposed multifluid hybrid algorithms is based on implementing different numerical schemes
in different parts of the computational domain. Specifically, we solve the conservative system (2.1)—
(2.5) using the CU scheme outside of the interface regions, while inside such regions, we solve the
nonconservative system (2.1), (2.2), (2.4), (2.5), (2.7) using the PCCU scheme. Notice that our
hybrid approach is generically nonconservative, but the conservation error is expected to be pro-
portional to Az as we solve the pressure equation (2.7) in a small neighborhood of the material
interface only.

In §2.1.1-§2.1.4, we describe the semi-discrete second-order CU and PCCU schemes and their
fifth-order extensions developed within the A-WENO framework.

2.1.1 Semi-Discrete Central-Upwind (CU) Scheme

We first provide a brief description of the 1-D second-order CU scheme. To this end, we rewrite
the conservative system (2.1)—(2.5) in the vector form as

U-+FU),=0, (2.8)

where F(U) = (pu, pu® + p,u(E + p), pup)" and apply the CU scheme from [20] in each cell
C;: j¢{J,J+1}. The latter results in the following system of ODEs:

s B S TR S Y
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where
+ - - + + -
at F(U: —a. F(U a’t L a’
J+g (UJ+%) j+35 (Uy+é) J+5 it n _
Hj+1= — — + — = U l—UAl—QjJF; . (2.9)
2 a’ , —a. 4 a’ , —a. Jt3 J+ 2
J+3 J+3 J+35 Jts3

Here, Ujjfrl are the right /left-sided values of U constructed in the following way. From the available
2

cell averages ﬁj = (ﬁj, (pu) j,Ej, (po) j)T, we first compute cell centered values of the velocity u
and pressure p,

—\2

((pu) j)

, pi=(y—1) {Ej - T] —7j(Peo) s

J

Pj

Uj:

and apply a piecewise linear reconstruction to the primitive variables V' = (p,u, p, ¢)":

Vi(z) =V + (Vo)j(z —x5), x €, (2.10)
and a piecewise constant approximation to v and pu.:

(@) =7 and - (Poo);(2) = (peo)yy € G, (2.11)

where both 7; and (p.); are defined in (2.6). Since here we restrict our consideration to the case
of a single material interface, we have

- v, ifrx<xz; 1, N Doog, fx<z) 1,
(@) = Ttz (Poc)j(z) = M (2.12)
i1, otherwise, Doo,11, Otherwise.

The slopes (V;); in (2.10) are to be computed using a nonlinear limiter to ensure a non-
oscillatory nature of the piecewise reconstruction. In the numerical experiments reported in §3,
we have used a generalized minmod limiter [22,26,33]:

‘_/j — ‘_/jq ‘_/j+1 — qu
Az ’ 2Ax

N

| V.V,
(V); = minmod (9 ﬁAaz‘ j) ;

applied to the vector quantity V' in a component-wise manner. Here, the minmod function is

defined as
min{z;}, if z; > 0V,
j

minmod(z1, 22, -+ ) 1= { max{z;}, if z; <0 Vj, (2.13)
j
0, otherwise.

The parameter 6 can be used to control the amount of numerical dissipation present in the resulting
scheme and larger 6’s correspond to less dissipative but, in general, more oscillatory reconstruc-
tions.
We then use (2.10) and (2.12) to obtain
~ Ax _ ~ Ax
V;:% = Vi@ +0) = Vi = — (Vo)jrr, VI = Vilg, =
+

Vi =% =W (o)1 = (Pe)s = (Po) st (2.15)
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and the corresponding point values

pj:‘i'% +’Y+ (poo);t_i_l p;'l:_i_l(u;t_i_l)Q

-

U=, =(pf ., pF ut + 12 pF e, .

i+ Pivt Pipi%iey L =1 2 ’pJJF%(bJ*%
i+

Note that (2.15) is true since we now consider single-fluid parts of the computational domain only,
that is, j ¢ {J,J + 1}.

Remark 2.1 We use the piecewise linear reconstruction of the primitive variables V' since both
the pressure and velocity are continuous across the material interface.

The term Q. 1 in (2.9) represents a built-in “anti-diffusion” and it is given by (see [20]):

U, U, U, -U
Qj+% = minmod ( i+2 _HQ , f2 _J+2> , (2.16)
aj+§ - aj+% a]+% - aj+§
where
ot UL —a U - {FU,) - FU) |
. R N e j+3 i+3
Uj+% = 7 - 2 ERE A (2.17)

a’ , —a;
jty gt

Finally, a# , are the one-sided local speeds of propagation obtained from the largest and the

smallest elgenvalues of the Jacobian 35 as follows:
+ - _ .- - + At
Gl T { Yirs Ty +3 te +§’O}’ T {uﬂé Gt Uit Cj+§’o}’ (2.18)

where ¢ := /7(p +poo)/p-

2.1.2 Path-Conservative Central-Upwind (PCCU) Scheme

In order to design a second-order PCCU scheme for the system (2.1), (2.2), (2.4), (2.5) and (2.7),
we first rewrite it in the following vector form:

U, + FU), = BUU,, (2.19)

where U = (p, pu,p, pp) ", F(U) = (pu, pu® + p, pu, pup) ", and

0 00
0 0 00
BU) =1y =Dp+ap]u 1=Mp—we (2.20)
p p
0 0 00

Applying the PCCU scheme from [5] to the System (2.19), (2.20), we arrive at the following
semi-discretization for U,; = (ﬁj, (pu);, pj, (p¢) )

dU; 1 a;_ 41 ,
a = —E j+i -1 i a;L + #B\P,j—&-% y J §Z {J,J‘i‘ 1}7

9
1 ! 1
-3 ) J+3 Jt+3
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where

J+5 i+3 3 +3 J+3 it _
My = + (v, -y, - Q).
J+s J+3 Jjts3 J+s
!
By = (0.0, [ 160) = D) + 3] (1) d.0) 221)
Ci
du;i 1 !
By ;1= (0,0,/B(pj+§(s)) e ds,0> . (2.22)
0

In order to evaluate the integral in (2.21), we use the piecewise linear reconstructions of p and u
from (2.14) to obtain

B _ 1[ - 1\ + 1yt
- - + + - + -
+7j+%(poo)j+% +7j_%(poo)j_%] (uj+% —uj_%), je{J. J+1}.

For the integral in (2.22), one needs to select a path connecting the points (u and

(UL;ap;;)‘ In this paper, we use a linear path, that is,
2 2
pj+%(3) = p;r+1 + (1 - 5)p;+%7 uj+l<3) = u;l

which results in

1
2

Note that according to (2.11), both v and p., have jumps at the material interface x = x 150
that

Vi =V =V (Poo)

= (p00>7 (poo)J7
- and s s (2.23)
7J+% :ny_l—% = YJ+1 (poo)J+g :<poo>J+% :(poo)J—&-l‘

As in §2.1.1, we then reconstruct the primitive variables V' to obtain the point values Z/lj,:L 1 The
built-in “anti-diffusion” term @, 1 is given by (2.16), (2.17) but with U and F replaced with U
and F, respectively. The local speeds air ! are still computed using (2.18) with fyjjr ! and (poo);.i%
given by (2.23).

Remark 2.2 Notice that in the PCCU scheme presented in [5], the “anti-diffusion” term Q) 11
was switched off.
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2.1.3 Fifth-Order A-WENO Scheme

In order to increase the resolution of contact waves and smooth parts of the solution, one may
want to use a higher-order extension of the F'V scheme presented above. In this section, we show
how to design such an extension using an A-WENO finite-difference approach. According to this
approach, the point values of the solution of (2.8) are evolved in time by solving the following
system of ODEs:

AU; - Dy 954

dt Ax
Here, $); 1 is the fifth-order numerical flux defined by

1
Dy = Hisy = 51 (A0)(Fra) (A2)! (Frrea) 14 (2.24)

i+ 1 5760

see [17,23,24,35,36] for its derivation. In (2.24), Hj

flux (2.9)), and the higher-order convection terms (Fm) j+3 and (Frozae) iy 1 are computed using
the second- and fourth-order finite-differences as follows:

1

1 is the F'V numerical flux (we use the CU

(Fro)jis = W(_5Fj_2 +39Fj1 — 34F) — 34Fji1 + 39Fj42 — 5Fjy3),
1 (2.25)
(Fraoe)j g = W(FJ—Q — 3Fj_1 +2F; + 2Fj 1 — 3Fj4s + Fj.3).

It should be emphasized that the resulting scheme will be fifth-order accurate provided the one-
sided point values U jil used in the numerical flux H j+L are also fifth-order accurate. In this
paper, we use the fifth-order alternative WENO polynomial interpolation procedure with the Z-
type weights (WENO-Z) (see [17,23,36]) applied once again to the primitive variables V; in a
component-wise manner. For the sake of brevity, we only introduce how to compute V;r%, while

Vin
2
Equipped with the point values V;, we first compute three parabolic interpolants Py(z) =

(P1(z), Pa(z), 733(x))T using the point values {(x;_o4x, Vi—o1k), (Tj—14%, Vic1+k), (Tj4k, Viir)} for
k =0,1,2. The fifth-order WENO-Z interpolations for the ith component of V' (i = 1,2,3,4) are
then given by

can be obtained using the mirror-symmetric stencil.

V() Zwk P (2.26)
h
e (i) 3y _du@ 15
Po (%’%) = ng—Q - Zvj—l 3 V
731( )<5’5j+§) = _gvj(—)l + ZV;( 8‘/](-4-17
(i _3 3.-)
P; (%‘+%) = é‘/] + 4VJ+1 - gvﬁz
The weights w,(:) in (2.26) are computed by
(4) (4) P
(@) _ g (6 _ 75
SN CERSN O RN =de |14 | 2@
ay’ + oy’ +ay By +e
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with dy = &, dy = 3, dy = 2, B\ defined by
2 0 (0) N 2
(9 _ 20—1 % Pk: _
B => (Ax) /( ok ) dz, k=0,1,2,
=0 g
and 75 |621) ﬁéi)|. In all of the numerical examples reported in §3, we have chosen p = 2 and
e=10"12

2.1.4 Path-Conservative A-WENO Scheme

In order to increase the accuracy inside the interface region {C;,Cj;1}, one may use the path-
conservative A-WENO scheme there. According to [9], this scheme reads as

—_— = — 1 — S —— i1 D — i1
dt Az ’ aj—% a1 o a;—i-% A o
Az 7 3
ﬂ |:(K:ESC)]+% - (Ka:x>j—% - %(Ax) [(K$I$$)g+% - (K$$$$)]—%i| )

where ’;’-LJJr , B; B\I,]Jrl and a® ! are defined as in §2.1.2, LljE 1 are computed using the fifth-

order WENO-Z interpolant descrlbed in §2.1.3, and (K,.), i+l and (Kprar) j+ are finite-difference
approximations of the second- and fourth—order spatial derivatives of the function

xT

K(U(-.1)) = FU(z,1)) - / BU(E D)€, 1) dé.

The derivatives of K are given by (see [9])
(Kﬂcm)j—k% = (-’Fﬂca:)ﬁé - [(B<u)uz)m]j+%
(Kxxx:c)j+ - (j:-ccazarx>j+% - [(B(u) ua:)a:a:x}j.Féy

where (F..); i+ and (F zzea); 11 are computed in the same way as (Fy); 41 and (Frpez); 11 were
computed in (2 25), but with F replaced by F, and

1
2

(BROU).1y = grx |~ (BUOU), o0+ 21(BUUL), 1~ W(BROU), + (BUU); ),
(BOU) )y = ] (BROU 0 = BBQUUL) 1 + SBUU,), — (BUU) -}
Here, (BU)U,)m = BU,)(UL)m, for m =35 —1,7,7+ 1,5+ 2, and

Us);1 = ﬁ(uj+2 — U+ 18Uy — 10U —3U; ),

U.); = @( —Ujo+8Uj —8U; 1 + uj_2>,

(Us)j41 = ﬁ( — U+ 83U — 8U + Uy ),

(Us)jro = 121A (3u]+3 10Uy — 18U + 6U; — uj,l).
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2.1.5 Mixed-Order Approach

Even though the component-wise WENO interpolation is essentially non-oscillatory, the resulting
A-WENO hybrid algorithm may still generate spurious oscillations. Using the local characteristic
decomposition and performing the interpolation in terms of the primitive variables may help to
reduce the magnitude of these oscillations but our numerical experiments clearly demonstrate that
this would not lead to a robust multifluid algorithm.

We therefore propose the following mixed-order strategy. We first reconstruct all of the re-
quired the point values using the WENO-Z interpolant and then check whether the obtained point
values satisfy monotonicity and smoothness conditions. The monotonicity is checked for the fol-

. . — + —
lowing sequences: (pj, p; e pjﬁ%, pis1)s (uy, Upps U uj1) and (pj,p; _,_%717;-:_%717]4-1) and the
smoothness is checked for the pressure. Namely, we say that the pressure profile is locally smooth
if N B
P 1 TP j+%‘

C(Ax)?
max {p;ﬁr%,p;ré} < elAa)’
where C is a constant, which may be adjusted experimentally (in all of the 1-D numerical examples
reported in §3, we have taken C = 1).
If the above monotonicity and smoothness conditions are satisfied at z = z; 1, We use the fifth-
order A-WENO fluxes from §2.1.3 and §2.1.4. Otherwise, we locally switch to the second-order
CU fluxes from §2.1.1 and §2.1.2, respectively.

2.2 Two-Dimensional Algorithm

We now consider the 2-D system (1.1)—(1.5), (1.7) and extend our 1-D hybrid algorithms to the
2-D case. The extension is rather straightforward as it is carried out in a dimension-by-dimension
manner. We therefore only provide a brief description of the 2-D algorithm here.

We introduce a uniform Cartesian mesh with z; := jAz and y;, := kAy, and assume that the

cell averages,
— 1
U, =~ U t)dyd
Ji:k AZL’Ay // (ZL’,y, ) yar,
Cjx

have been computed at a certain time ¢ > 0. Here, C;, == [z

cells and U := (p, pu, pv, E, pp)".

As in the 1-D case, we first locate the position of the interface using the level-set function
¢, whose discrete values are computed by ¢;r = (p¢) ik /P;x- These values are in turn used to
identify the so-called interface region. Specifically, we say that C;; is an interface cell if either
Gik - Pir1k <0, ik Oj_1k <0, Ojp- @jpt1 <0 o0r @jp-@jr_1 < 0. We then replace the energy
equation (1.4) with the pressure one,

jfé,x#%] X [ykfé,yﬂé] are the FV

pr+ (up)e + (vp)y = — [(v = 1) + 7Poc) e — (7 — 1) + Y0y Poo] vy, (2.27)

in the interface region, where we will solve the system (1.1)—(1.3), (1.5), (1.7) and (2.27) instead
of (1.1)—(1.5), (1.7).

We thus take the same hybrid approach as in the 1-D case. Away from the interface, we solve
the conservative system (1.1)—(1.5), (1.7) using the 2-D semi-discrete CU scheme. Its second-order
version is briefly described in Appendix A. A higher- (fifth-) order extension can be obtained
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within the finite-difference A-WENO approach by implementing the 1-D A-WENO numerical
fluxes described in §2.1.2 in the z- and y-directions.

Inside the interface region, we solve the nonconservative pressure-based system (1.1)—(1.3),
(1.5), (1.7) and (2.27) using either the second-order PCCU scheme or its fifth-order A-WENO
extension recently proposed in [9]. In order to reduce the magnitude of the oscillations that
might be present in the fifth-order results, we implement the same mixed-order strategy as the
one presented in §2.1.5. We check the monotonicity at the middle of each cell interface. In the
z-direction, we check whether the following sequences are monotone:

- E W - E W E W E W
(Bjks ks P31 s D) s (Wi g 051 g Wien k) (Vi Vs 031 s Vi) 5 (Piks Pk Pyt o P
Here, w;k, vj; and p,; are the point values of u, v and p at the cell centers given by (A.2), and
P P Wk Wy s Vi V)N 1 g Phy and piY o ave the one-sided point values of p, u, v and p at
the center of the cell interface given by (A.3). We also verify the local smoothness of the pressure
there by checking whether the inequality
’pﬁl,k - p}Ek|
W E
max {p, 4, P}

is satisfied. Similarly, in the y-direction, the monotonicity is checked for the following sequences:

< C(Az)?

- N S - N S N S N S
(IOj,k’ pj,kn pj,k+17 pj,k-i-]) ) (uj,ka uj,ka uj,k-{-la uj,k-i—l) ) (Uj,ka vj,ka ’Uj7k+17 Uj,k—‘rl) ; (pj,kapj)kapj,k-i-hpj,k-‘rl) ’

and the corresponding smoothness condition is

S N
Pikr1 — Pk

max {pf 1. Py f

< C(Ay)*

The one-sided point values P?,Im pikﬂ, u?fk, uikﬂ, v}\fk, vﬁkﬂ, p?fk and pikﬂ used in the above
two formulae are defined in (A.3).

At the cell interfaces, where the above conditions fail, we replace the fifth-order A-WENO
fluxes with the second-order CU fluxes.

Remark 2.3 In all of the 2-D numerical examples reported in §3, we have taken C = 5.

3 Numerical Examples

In this section, five numerical experiments are conducted to test the proposed hybrid algorithm.
In the first three 1-D examples, we test the shock-tube problem, the stiff shock-tube problem and
the water-air model problem. In the last two 2-D examples, we present the results for the Helium
and R22 bubble problems.

In all of the five examples, the time evolution is carried out using the three-stage third-order
strong stability preserving (SSP) Runge-Kutta method [12,13] with the CFL number 0.3. The
level-set function ¢ is initialized using

1, Z'EQ[,
—1, T € QH,

17 (l’,y) € Qla

3.1
_17 (x7y) € QII; ( )

for the 1-D and 2-D examples, respectively. In (3.1), Q; and Q;; are the parts of the computational
domain initially filled by fluids I and II, respectively.



12 A. CHERTOCK, S. CHU & A. KURGANOV

3.1 One-Dimension Examples

We begin with the 1-D numerical examples. Our numerical experiments (not shown here for the
sake of brevity) clearly indicate that in these three examples the second-order CU scheme and the
mixed-order A-WENO scheme perform very similarly. We believe that this is related to the fact
that the solutions of the studied Riemann problems do not contain complicated wave interaction
and /or oscillatory parts of smooth solution. We will therefore show the results obtained by the
mixed-order A-WENO scheme only.

Example 1—Shock-Tube Problem
In the first example, we consider the system (2.1)—(2.5) subject to the following initial conditions:

(1.000,0,1.0;1.4,0), =< 0.5,

7u7 ; b) o ==
(P11, 137 o) {ml%mﬂLL&m,x>05

We compute the numerical solution until the final time ¢ = 0.2 on a uniform mesh with Az = 1,/200.
The solution computed by the mixed-order A-WENO scheme is plotted in Figure 3.1. As one can
see, there is no oscillations in either velocity or pressure fields at the neighborhood of the contact
wave, which demonstrates the robustness of the proposed hybrid approach.

p u Yy
1
q e, Ll
0.8
0.8 0.8
06 :
0.6 0.6
", 0.4 :
_— :
0.4 : 0.4 ,
: 0.2 : —
0.2 : 0.2
0 — —
0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

Figure 3.1: Example 1: Density (p), velocity (u) and pressure (p) computed by the mixed-order
A-WENO scheme.

Example 2—Stiff Shock-Tube Problem

In the second example, we consider another shock-tube problem with the initial conditions given
by
' ~)(1,0,500;1.4,0), z<0.5,
(0w 1,P) =4 (1 0.09:1.6,0), > 05

We compute the solution using the mixed-order A-WENO scheme until the final time t = 0.015
on a uniform mesh with Az = 1/400 and plot its components in Figures 3.2 (density) and 3.3
(velocity and pressure). As one can observe, the obtained solution is oscillation-free and the
achieved resolution is of a high quality. In order to demonstrate the experimental convergence of
the proposed scheme, we zoom at the shock and contact wave areas of the density and compute the
solution on finer uniform grids with Az = 1/800 and 1/1600. The results of the mesh-refinement
study, shown in Figure 3.2 (right), indicate a fast and monotone convergence of the solution.



HYBRID MULTIFLUID ALGORITHMS 13
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Figure 3.2: Example 2: Density (p) computed using Az = 1/400 (left) and zoomed mesh-refinement
study (right).

U p
14 f ~ ] 500
12} / ‘
400}
10}
sl 300}
61 200}
4t i
100
ol
o—_ . ‘ ‘ : of ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 3.3: Example 2: Velocity (u) and pressure (p) computed by the mixed-order A-WENO scheme.

Example 3—Water-Air Model Using the Stiff Equation of State

In the last 1-D example, we consider a gas-liquid multifluid system, in which the liquid component
is modeled by the stiff EOS (2.4) with pw s # 0. The initial conditions correspond to a severe
water-air shock tube problem and they are given by

(1000,0,10%;4.4,6 - 10%), z < 0.7,

7u7 ; ) [o@) -
(P, P37, Pec) { (50,0, 10°: 1.4, 0), r> 0.7,

We compute the solution using the mixed-order A-WENO scheme until the final time ¢t = 0.00025
on a uniform mesh with Az = 1/400 and present the results in Figures 3.4 and 3.5. In order
to demonstrate the experimental convergence of the proposed scheme, we perform computations
on a series of refined meshes with Az = 1/800 and 1/1600, and zoom the solution at the areas
of shock and contact waves in Figure 3.4 (right). The obtained results clearly indicate that the
mixed-order scheme provides a high overall quality of the computed solution.
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Figure 3.4: Example 3: Density (p) computed using Az = 1/400 (left) and zoomed mesh-refinement
study (right).
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Figure 3.5: Example 3: Velocity (u) and pressure (p) computed by the mixed-order A-WENO scheme.

3.2 Two-Dimensional Examples

In this section, we use the second-order CU scheme and the mixed-order A-WENO scheme to
compute the numerical results of the interaction between a shock and a bubble. A shock wave
in the air hits the resting bubble which contains either helium (Example 4) or R22 (Example 5).
In each case, complicated solution structures are developed having very distinct wave properties
since helium is lighter and R22 is heavier than air. These two examples follow the experiments
reported in [14] and numerical simulation conducted in [8,29]. The computational domain of the
initial setup is shown in Figure 3.6. The top and bottom boundaries are solid walls, while the
left and right boundaries are open. In both Examples 4 and 5, the uniform spatial grid with
Az = Ay = 1/500 has been used in numerical simulations. In Figures 3.7-3.10, we illustrate the
results obtained at different time moments during the interaction process. In these figures, we
plot Schlieren images of the magnitude of the density gradient field, |Vp|. To this end, we have
used the following shading function:

K|Vp|
el It B K =
eXp( max(\w)’ 50,

where the numerical density derivatives are computed using standard central differencing.
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Example 4—Helium Bubble

In the first 2-D example, we consider the system (1.1)—(1.5), (1.7) subject to the following initial
conditions:

(4/29,0,0,1;5/3,0), in region I,
(p, u, P;7Y, Poc) = & (1,0,0,1;1.4,0), in region II,
(4/3,—-0.3535,0,1.5;1.4,0), in region III,

where regions I, IT and III are outlined in Figure 3.6.

11 - 111

-025 0 025 0.75

Figure 3.6: Initial setting for the 2-D numerical examples.

Figures 3.7 and 3.8 show different stages of the shock-bubble interaction computed by the
second- and mixed-order schemes. When reaching the bubble, the shock wave partially refracts
and partially reflects. As the speed of sound in helium is faster than that in air, the refracted
shock is curved and propagates inside the helium bubble faster than in the air. Under the force
of the shock, the bubble compresses and is put into motion. The helium accelerates more under
the influence of the shock and a shear layer is created through the bubble interface, giving rise to
highly complex refraction patterns. After the shock finishes its sweep over the bubble, the bubble
begins to grow slowly into a recognizable kidney shape until losing its integrity and breaking up.
The obtained results are in good agreement with the numerical results reported in [8,29]. From
Figures 3.7 and 3.8, one can see that the mixed-order A-WENO scheme can capture the material
interface sharper and resolve more small details of the solution than the second-order scheme,
especially near the interface at large computational times; see Figure 3.8.

3.2.1 Example 5—R22 Bubble

In the second 2-D example, we consider the following initial conditions:

(3.1538,0,0,1;1.249,0), in region I,
(p,u, P; 7, Poo) = 4 (1,0,0,1;1.4,0), in region II,
(4/3,-0.3535,0,1.5;1.4,0), in region III,

where, as in the previous example, the regions I, I and III are specified in Figure 3.6.

In Figures 3.9 and 3.10, we present different stages of the shock-bubble interaction computed
by the second- and mixed-order schemes. The R22 heavy bubble compresses and undergoes a
deformation upon being hit by the shock wave, and the shock partly reflects and partly refracts.
Unlike the case of a light helium bubble studied in Example 4, the speed of sound inside the
R22 bubble is lower than the outside speed, allowing the refracted shock wave to travel more
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t=0.5

05" \/‘ - 0.5

-1.5 -1 -0.5 0 05 -15 -1 -0.5 0 0.5

Figure 3.7: Example 4: Shock-helium bubble interaction by the second- (left column) and mixed-order
(right column) schemes at times ¢ = 0.5, 1 and 1.5.

slowly than the shock outside the bubble. As the bubble is heavier than the surrounding air, it
accelerates less than the air under the influence of the shock. As a consequence, vorticity is created
at the bubble interface. It is possible to observe that the refracted shock concentrates inside the
bubble, creating a pressure increase and resulting in a noticeable forward jet around the middle
of the bubble. If the shear begins to develop under the induced vorticity field, the shear at the
boundary interface allows the interface to roll up. The obtained results are in good agreement
with the results reported in [8,29]. From Figures 3.9 and 3.10 one can see that, as in Example
4, the mixed-order A-WENO scheme can capture both the material interface and small futures of
the solution in a sharper manner than its second-order counterpart. The difference in the results
computed by the two studied schemes becomes larger at larger times; see Figure 3.10.

Declarations:
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Figure 3.8: Same as in Figure 3.7, but at larger times ¢t = 2, 2.5 and 3.
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Figure 3.9: Example 5: Shock-R22 bubble interaction by the second- (left column) and mixed-order
(right column) schemes at times ¢ = 0.5, 1 and 1.5.

A Semi-Discrete Central-Upwind (CU) Scheme

In this section, we briefly describe the semi-discrete CU scheme for the homogeneous 2-D systems
(1.1)-(1.5). The 2-D semi-discrete CU scheme from [7,20] admits the following flux form:

—H? HY 1—H]7.’

itgok j—gk  TTik+s
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Figure 3.10: Same as in Figure 3.9, but at larger times ¢t =2, 2.5 and 3
where the numerical fluxes are
W B
gk CL+ 1 —a’ 1 Jtgk ]+2’k at . —a, itk
+ Ny _ j— S ’
. b GUN) — 0, A GU) o | U = U o
ikts bt —b Gkt Gkt | bT L — b Gkt3
dkts  Tik+s Ghty o kta

Here, U®, UV, UN, U® are the approximate point values of U, Wthh are computed as follows.
First, from the available cell averages U, = (P (pu)]k, (pv)]k, s (p(b)] k)T, we compute
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cell centered values of the velocities v and v and pressure p:

(pu)jk (pv)ﬁk
Ujk = 5—7 Uik = ﬁ—7
J.k 3,k
() (0, 2
ik = (Vjik—1)| Ejr —

= - 7',k(poo) ik
2p],]€ J J

and construct a piecewise linear reconstruction applied to the primitive variables V'

= (p,u,v,p,9)":
Vie,y) = Ve + (Vo)jule — ) + (V) nly —w),  (2,y) € Oy
We then obtain A A
—_— X — X
V]Ek =V + T(Vx)j,k, VJVIX =Vijr— T(V;)j,k,
N 7 Ay S 7 Ay (A.S)
Vik= Vit < V)iks Vie=Vijr— 7(%)j,k>

which are the values of V at midpoints of the edges of the cell Cjy,

As in the 1-D case, the
numerical derivatives (V;,);, and (V,),, are computed using the generalized minmod limiter as

, 0

: Vo= Vie Viag— Vo , Vie— Vi
‘/m R dl e Jj+1, J> Jt+1i, J—1 J5 J—1
(Vz)js = minmo ( Az ’ 2Ax Az )’

Ay ’ 2Ay ) 0 Ay

where the minmod function is defined by (2.13) and, as in the 1-D case, applied to the vector
quantity V' in a component-wise manner.

The built-in “anti-diffusion” terms Q*

(V,);, = minmod (9 Vikrr = Vi Vikrn = Vg ) Ve = Vj,k:—l) 7

y . .
" and Qj,k+% in (A.1) are given by (see [7])
* E *
x — mi d U-7+2»k Uj’k U]+1k UJ+2,]€
g T THIROG L 0 LL—a ., at,, —a ’
J+§7k j+§7k J+2’k ]+§:k
* N S *
y ’ Uijr2 U. U: Tt ULH%
el = minmod | —— - — ,
Jkt3 bt . —b7 b —b.
J9k+§ ]’k+2 .7 k+2 J:k+§
where “
S U (PO - FOR)
]+27k a+ _ a/* ?
‘+§,k J+3.k
+ s _ - _ N
U bj,k-&-%UijJrl bj,k {G( k+1) G(Uj,k)}
1 — —
]7k+2 b+ 1 b 1
Jik+5 Jik+3
Finall nd b*
ally, a +27k and bj

L1 are the one-sided local propagation speeds in the x- and y-directions
2

respectlvely They are obtained using the largest/smallest eigenvalues of the Jacobians gTI; and
aU For the reactive Euler systems (1.1)—(1.5), these speeds can be estimated by
+ E E W w . E E W W
aj+%’k — max (uj’k + Cik Wikt + Gl s 0), aj+%7k = min <uj7k = Cik Wit1k — Gt ko 0),
+ N N S 5 - N N S S
b; i+ T HAX ( Uj T Gk Wjktr + gy 0)7 bj,k;-‘,—% — i (“j,k Gk Ujkt1 T Gkt 0>’
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where ¢ = \/7(p + peo)/ p-
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