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Abstract

We consider the two-dimensional rotating shallow water equations with nonflat bottom
topography. We focus on the case of low Froude number, in which the system is stiff and
conventional explicit numerical methods are extremely inefficient and often impractical. Our
goal is to design a finite volume scheme, which is both asymptotic preserving (uniformly
asymptotically consistent and stable for a broad range of low Froude numbers) and well-
balanced (capable of exactly preserving geophysically relevant steady-state solutions). The
goal is achieved in two steps. We first rewrite the studied equations in terms of perturbations
of the steady state and then apply the flux splitting similar to the one used in [Liu et al., J.
Comput. Phys., 391 (2019), pp. 259–279]. We split the flux into the stiff and nonstiff parts
and then use an implicit-explicit approach: apply an explicit second-order central-upwind
scheme to the nonstiff part of the system while treating the stiff part implicitly. As the stiff
part of the flux is linear, we reduce the implicit stage of the proposed method to solving
a Poisson-type elliptic equation, which is discretized using a standard second-order central
difference scheme.

We prove the asymptotic preserving property of the developed scheme and conduct a
series of numerical experiments, which demonstrate that our scheme outperforms the non-
well-balanced asymptotic preserving scheme from [Liu et al., J. Comput. Phys., 391 (2019),
pp. 259–279].
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1 Introduction

Rotating shallow water (RSW) equations are often used to model oceanic and atmospheric cir-
culations; see, e.g., [11, 21, 34, 37–39, 41, 46]. In the case of the nonflat bottom topography, the
two-dimensional RSW equations read as

ht ` phuqx ` phvqy “ 0,

phuqt `
´

hu2
` g

h2

2

¯

x
` phuvqy “ fhv ´ ghZx,

phvqt ` phuvqx `
´

hv2
` g

h2

2

¯

y
“ ´fhu´ ghZy,

(1.1)

where t is time, x and y are horizontal spatial coordinates, hpx, y, tq is the water depth, upx, y, tq
and vpx, y, tq are the x- and y-components of the flow velocity, g is the constant gravitational
acceleration, f is the Coriolis parameter, and Zpx, yq is the bottom topography.

The RSW system (1.1) is a nonlinear hyperbolic system of balance laws. Their solutions
may develop a complex wave structure including nonlinear shock and rarefaction waves, as well as
linear contact waves. Therefore, solving (1.1) numerically requires development of shock-capturing
methods, which utilize nonlinear mechanisms to stabilize computed solutions; see, e.g., [7,16,23,30]
and references therein.

Moreover, the RSW equations admit nontrivial steady-state solutions (equilibria). In fact,
many geophysical flows are small perturbations of the so-called geostrophic equilibria satisfying

ux ` vy “ 0, gph` Zqx “ fv, gph` Zqy “ ´fu. (1.2)

Therefore, one needs to develop well-balanced (WB) shock-capturing schemes, which are capable of
exactly preserving geostrophic steady states and thus accurately capture their small perturbations
on (computationally affordable) coarse grids; see, e.g., [2, 3, 6, 8, 22,33].

In [9], the authors proposed two WB second-order finite volume methods that are capable of
exactly preserving some of the geostrophic steady states satisfying (1.2) and accurately capturing
their small perturbations. However, the WB methods developed in [9] did not take into account a
multiscale character of typical oceanic and atmospheric flows. Consequently, these methods were
inefficient in geophysically relevant low Froude number regimes. For instance, the current velocity
in oceans is approximately uchar “ 1 m{s and the vertical length depth hchar is around 100 ´ 1000
m. This means that typical advection speed uchar is much smaller then the speed of gravitational
waves cchar “

?
ghchar, and thus the Froude number Fr :“ uchar{cchar ! 1 (typically being in the

range 0.01 ´ 0.032). The latter implies that there are terms of a very different magnitudes in
(1.1) and hence, if an explicit time discretization of (1.1) is used, the CFL stability condition may
impose severe restrictions on the size of time steps. Moreover, the size of the spatial grid required
to be used to ensure that the amount of numerical diffusion is not unphysically large, must be also
taken sufficiently fine and the resulting numerical method may become impractically inefficient.

The multiscale character of a studied problem can be taken into account in the framework
of the so-called asymptotic preserving (AP) methods; see, e.g., [18, 19], where the concept of AP
methods was introduced. A numerical scheme is called AP if it is uniformly consistent and stable
as a singular perturbation parameter, for instance the Froude number, approaches its limit, that
is, Fr Ñ 0. In particular, the AP scheme should reduce to a consistent approximation of the
limiting equations as Fr Ñ 0 and the stability time-step restriction should be independent of Fr.
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The AP schemes have been widely studied for the kinetic equations; see, e.g., [17, 20] and
references therein. They have been also applied to the low Mach number compressible Euler and
Navier-Stokes equations in, e.g., [5, 10, 12, 14, 36, 45]. Several AP schemes were developed for the
Saint-Venant system of shallow water equations; see e.g., [4, 13,43]. Adding Coriolis forces to the
Saint-Venant system brings another level of complexity since in the RSW equations, not only the
hydrostatic pressure, but also the Coriolis term is stiff in the low Froude number regime. An
asymptotically consistent method for the RSW equations was developed in [44] and an AP scheme
has been recently developed in [32].

The goal of this paper is to design a new finite volume method for the RSW system (1.1) that is
both WB and AP. To this end, we will first rewrite the RSW system (1.1) in terms of a perturbation
of the geostrophic steady state. The rewritten system will be discretized using the stiff-nonstiff
flux splitting approach from [14,32] and an implicit-explicit time discretization. The nonstiff part
of the flux will be approximated using the central-upwind (CU) numerical flux. The CU finite
volume schemes were developed in [24, 25, 27, 28] as a class of simple (Riemann-problem-solver-
free), efficient and highly accurate “black-box” solvers for multidimensional hyperbolic systems of
conservation laws. The CU schemes were extended to the hyperbolic systems of balance laws and,
in particular, to a variety of shallow water models; see [23] and references therein. CU schemes
were also applied to the RSW equations (1.1): a WB CU scheme was proposed in [9], while an
AP CU scheme was introduced in [32].

The present paper is organized as follows. Section 2 is devoted to a nondimensional reformula-
tion of the RSW system (1.1) and its asymptotic analysis. In Section 3, we develop and analyze a
new WB-AP CU scheme. Finally, in Section 4, we test our new WB-AP CU scheme on a number
of numerical experiments.

2 Nondimensional Reformulation of the RSW Equations

We begin with the derivation of a nondimensional form of the RSW equations (1.1). To this end,
we first introduce the following characteristic scales: tchar is the characteristic time, Lchar is the
characteristic length, Hchar is the characteristic depth, and uchar the the characteristic velocity.
We then rescale (1.1) and obtain the nondimensional form of the RSW equations:

Sr ¨ ht ` phuqx ` phvqy “ 0,

Sr ¨ phuqt `

ˆ

hu2
`

1

Fr2

h2

2

˙

x

` phuvqy “
1

Ro
hv ´

1

Fr2hZx,

Sr ¨ phvqt ` phuvqx `

ˆ

hv2
`

1

Fr2

h2

2

˙

y

“ ´
1

Ro
hu´

1

Fr2hZy,

(2.1)

where

Sr :“
Lchar

tcharuchar

, Fr :“
uchar

?
gHchar

, Ro :“
uchar

Lcharf
,

are the Strouhal, Froude and Rossby numbers, respectively. Choosing tchar “ Lchar{uchar and
Hchar “ L2

char{g and denoting the reference Froude number by Fr “: ε, we obtain Sr “ 1, Ro “ ε,
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and rewrite the system (2.1) as
$

’

’

’

’

’

&

’

’

’

’

’

%

ht ` phuqx ` phvqy “ 0,

phuqt ` phu
2
qx ` phuvqy `

1

ε2

ˆ

h2

2

˙

x

“
1

ε
hv ´

1

ε2
hZx,

phvqt ` phuvqx ` phv
2
qy `

1

ε2

ˆ

h2

2

˙

y

“ ´
1

ε
hu´

1

ε2
hZy.

(2.2)

The formulation (2.2) clearly points out the multiscale character of the RSW model (1.1) and
identifies the terms of different ε-orders.

Let us now consider a steady-state solution denoted by ĥ, û and v̂, that is,

pĥûqx ` pĥv̂qy “ 0, (2.3a)

pĥû2
qx ` pĥûv̂qy `

1

ε2
ĥĥx “

1

ε
ĥv̂ ´

1

ε2
ĥZx, (2.3b)

pĥûv̂qx ` pĥv̂
2
qy `

1

ε2
ĥĥy “ ´

1

ε
ĥû´

1

ε2
ĥZy. (2.3c)

Moreover, any solution ph, u, vq of (2.2) can be written as

h “ ĥ` h1, u “ û` u1, v “ v̂ ` v1, (2.4)

where h1, u1 and v1 are the perturbations of the equilibrium pĥ, û, v̂q. In what follows we assume
that the steady state is given and rewrite the system (2.2) by using (2.3) and (2.4). This results
in the following reformulation of the original RSW equations (1.1):

h1t ` phu
1
` h1ûqx ` phv

1
` h1v̂qy “ 0, (2.5a)

phuqt `
`

2ĥûu1 ` ĥpu1q2 ` h1u2
˘

x
` pĥûv1 ` ĥu1v ` h1uvqy `

1

ε2

„

ph1q2

2
` pĥ` Zqh1



x

“
1

ε
phv ´ ĥv̂q `

1

ε2
h1xZ, (2.5b)

phvqt ` pĥûv
1
` ĥu1v ` h1uvqx`

`

2ĥv̂v1 ` ĥpv1q2 ` h1v2
˘

y
`

1

ε2

„

ph1q2

2
` pĥ` Zqh1



y

“ ´
1

ε
phu´ ĥûq `

1

ε2
h1yZ. (2.5c)

This form of the RSW system will be used to develop a new WB-AP scheme.

2.1 Asymptotic Analysis

We consider the low Froude number regime for the system (2.5) and study its asymptotic limit as
εÑ 0.

For the sake of the simplicity, instead of considering the general steady states (2.3), we assume
that ŵ :“ pĥ, û, v̂qJ is a geostrophic equilibrium satisfying

ûx ` v̂y “ 0, (2.6a)

1

ε2
pĥ` Zqx “

1

ε
v̂, (2.6b)

1

ε2
pĥ` Zqy “ ´

1

ε
û, (2.6c)
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which, together with (2.3), implies that
$

’

&

’

%

ûĥx ` v̂ĥy “ 0,

ûûx ` v̂ûy “ 0,

ûv̂x ` v̂v̂y “ 0.

(2.7)

In order to investigate the asymptotic limit of the system (2.5), we consider the following
asymptotic expansions of both w :“ ph, u, vqJ and the geostrophic equilibrium ŵ:

w “ wp0q
` εwp1q

` ε2wp2q
` ¨ ¨ ¨ , (2.8)

ŵ “ ŵp0q
` εŵp1q

` ε2ŵp2q
` ¨ ¨ ¨ . (2.9)

We first substitute (2.9) into (2.6) and (2.7), and then collect the ε-like powers to obtain

Opε´2
q : pĥp0q ` Zqx “ 0,

pĥp0q ` Zqy “ 0,

Opε´1
q : ĥp1qx “ v̂p0q,

ĥp1qy “ ´ ûp0q,

Op1q : ûp0qx ` v̂p0qy “ 0,

ûp0qĥp0qx ` v̂p0qĥp0qy “ 0,

ûp0qûp0qx ` v̂p0qûp0qy “ 0,

ûp0qv̂p0qx ` v̂p0qv̂p0qy “ 0,

Opεq : ûp1qx ` v̂p1qy “ 0,

ûp0qĥp1qx ` v̂p0qĥp1qy ` ûp1qĥp0qx ` v̂p1qĥp0qy “ 0.

(2.10)

Next, we take into account the scaling given by equations (2.6b) and (2.6c) and consider the
perturbations to be of the following sizes: h1 “ Opε2q, u1 “ Opεq and v1 “ Opεq, so that the
asymptotic expansions of w111 :“ ph1, u1, v1qJ are

h1 “ ε2h1
p2q
` ¨ ¨ ¨ , u1 “ εu1p1q ` ε2u1p2q ` ¨ ¨ ¨ , v1 “ εv1p1q ` ε2v1p2q ` ¨ ¨ ¨ . (2.11)

Note that since w “ ŵ `w111, equation (2.11) implies

ĥp0q “ hp0q, ĥp1q “ hp1q, ûp0q “ up0q, v̂p0q “ vp0q. (2.12)

Substituting (2.8), (2.9) and (2.11) into the reformulated RSW system (2.5), using (2.10) and
(2.12), and once again collecting the ε-like powers, we derive

Op1q : h1p2qx “ v1p1q, (2.13a)

h1p2qy “ ´u1p1q, (2.13b)

Opεq : pĥp0qu1p1qqt ` 2
`

ĥp0qûp0qu1p1q
˘

x
`
`

ĥp0qûp0qv1p1q ` ĥp0qu1p1qv̂p0q
˘

y
“ ĥp0qv1p2q, (2.13c)

pĥp0qv1p1qqt `
`

ĥp0qûp0qv1p1q ` ĥp0qu1p1qv̂p0q
˘

x
` 2

`

ĥp0qv̂p0qv1p1q
˘

y
“ ´ĥp0qu1p2q, (2.13d)

Opε2
q : h

1p2q
t `

`

h1p2qûp0q ` ĥp0qu1p2q ` ĥp1qu1p1q
˘

x
`
`

h1p2qv̂p0q ` ĥp0qv1p2q ` ĥp1qv1p1q
˘

y
“ 0. (2.13e)
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Finally, we differentiate equations (2.13c) and (2.13d) with respect to y and x, respectively, and
substitute them into (2.13e) to obtain

h
1p2q
t ´ pĥp0qv1p1qqxt ` pĥ

p0qu1p1qqyt “ 2
`

ĥp0qv̂p0qv1p1q ´ ĥp0qûp0qu1p1q
˘

xy

`
`

ĥp0qûp0qv1p1q ` ĥp0qv̂p0qu1p1q
˘

xx
´
`

ĥp0qûp0qv1p1q ` ĥp0qv̂p0qu1p1q
˘

yy
.

(2.14)

In summary, using (2.13a)–(2.13d) and (2.14) we derive the following equations:

u1p1q “ ´h1p2qy ,

v1p1q “ h1p2qx ,

pĥp0qu1p1qqt ` 2
`

ĥp0qûp0qu1p1q
˘

x
`
`

ĥp0qûp0qv1p1q ` ĥp0qu1p1qv̂p0q
˘

y
“ ĥp0qv1p2q,

pĥp0qv1p1qqt `
`

ĥp0qûp0qv1p1q ` ĥp0qu1p1qv̂p0q
˘

x
` 2

`

ĥp0qv̂p0qv1p1q
˘

y
“ ´ĥp0qu1p2q,

h
1p2q
t ´ pĥp0qv1p1qqxt ` pĥ

p0qu1p1qqyt “ 2
`

ĥp0qv̂p0qv1p1q ´ ĥp0qûp0qu1p1q
˘

xy

`
`

ĥp0qûp0qv1p1q ` ĥp0qv̂p0qu1p1q
˘

xx
´
`

ĥp0qûp0qv1p1q ` ĥp0qv̂p0qu1p1q
˘

yy
.

(2.15)

3 A Well-Balanced Asymptotic Preserving Scheme

In this section we develop an AP scheme for the RSW system (2.5) and perform an asymptotic
analysis to show that the new scheme provides a consistent and stable discretization of the limiting
system as the Froude number ε Ñ 0. We will also show that the proposed AP scheme is WB in
the sense that it is capable of preserving the steady states (2.3) at the discrete level.

3.1 Hyperbolic Flux Splitting

In order to construct an AP scheme for the system (2.5), we split the fluxes into two parts
corresponding to the slow and fast dynamics:

h1t ` α
“

phu1 ` h1ûqx ` phv
1
` h1v̂qy

‰

` p1´ αq
“

phuqx ` phvqy
‰

“ 0, (3.1a)

phuqt `

ˆ

2ĥûu1 ` ĥpu1q2 ` h1u2
`

ph1q2

2
`
`

ĥ` Z ´ aptq
˘

h1

ε2

˙

x

` pĥûv1 ` ĥu1v ` h1uvqy `
aptq

ε2
h1x

“
1

ε
phv ´ ĥv̂q `

1

ε2
h1xZ, (3.1b)

phvqt ` pĥûv
1
` ĥu1v ` h1uvqx `

ˆ

2ĥv̂v1 ` ĥpv1q2 ` h1v2
`

ph1q2

2
`
`

ĥ` Z ´ aptq
˘

h1

ε2

˙

y

`
aptq

ε2
h1y

“ ´
1

ε
phu´ ĥûq `

1

ε2
h1yZ. (3.1c)

We note that equation (3.1a) is indeed equivalent to equation (2.5a), as the steady-state solution
ŵ satisfies the relationship (2.3a). The system (3.1) can be rewritten in the following vector form:

Ut ` rF pUqx ` rGpUqy ` qF pUqx ` qGpU qy “ SpUq,
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where U :“ ph1, hu, hvqJ are the conservative variables. The nonstiff fluxes rF and rG governing
the slow dynamics and

rF pUq :“

¨

˚

˚

˚

˝

αphu1 ` h1ûq

2ĥûu1 ` ĥpu1q2 ` h1u2 `
1

ε2

„

ph1q2

2
`
`

ĥ` Z ´ aptq
˘

h1


ĥûv1 ` ĥu1v ` h1uv

˛

‹

‹

‹

‚

,

rGpUq :“

¨

˚

˚

˚

˝

αphv1 ` h1v̂q

ĥûv1 ` ĥu1v ` h1uv

2ĥv̂v1 ` ĥpv1q2 ` h1v2 `
1

ε2

„

ph1q2

2
`
`

ĥ` Z ´ aptq
˘

h1


˛

‹

‹

‹

‚

,

(3.2)

while the stiff fluxes qF and qG describing the fast dynamics and the source term S are

qF pU q :“

¨

˚

˚

˚

˝

p1´ αqhu
aptq

ε2
h1

0

˛

‹

‹

‹

‚

, qGpUq :“

¨

˚

˚

˚

˝

p1´ αqhv

0
aptq

ε2
h1

˛

‹

‹

‹

‚

, SpUq :“

¨

˚

˚

˚

˚

˝

0
1

ε
phv ´ ĥv̂q `

1

ε2
h1xZ

´
1

ε
phu´ ĥûq `

1

ε2
h1yZ

˛

‹

‹

‹

‹

‚

.

Notice that the eigenvalues of the Jacobians B rF {BU and B rG{BU are

#

u, u˘

d

p1´ αqu2 ` α
h1 ` ĥ` Z ´ aptq

ε2

+

(3.3)

and
#

v, v ˘

d

p1´ αqv2 ` α
h1 ` ĥ` Z ´ aptq

ε2

+

, (3.4)

respectively. In order to guarantee the hyperbolicity and nonstiffness of the subsystem Ut `
rF pUqx` rGpUqy “ 0, the flux splitting parameters α and aptq should be selected in an appropriate
way. We choose

α “ min
´

εs,
1

2

¯

and aptq “ min
px,yqPΩ

´

h1px, y, tq ` ĥpx, yq ` Zpx, yq
¯

, (3.5)

where s ě 1. As discussed in [32], although one can take any value of s ě 1, we set s “ 2 to
guarantee that the stability time-step restriction is independent of ε; see (3.3), (3.4) and (3.5).

3.2 First-Order Implicit-Explicit (IMEX) Time Discretization

In order to derive an efficient discretization of the multiscale RSW equations (3.1) we follow the

implicit-explicit (IMEX) approach and approximate the nonstiff flux terms, rF pUqx and rGpUqy,

explicitly and stiff flux and source terms, qF pUqx, qGpU qy and SpU q, implicitly.
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We first apply the simplest first-order IMEX method (forward-backward Euler method from [1])
to the system (3.1) and obtain

ph1qn`1 ´ ph1qn

∆t
`α

“

phu1 ` h1ûqnx ` phv
1
` h1v̂qny

‰

` p1´ αq
“

phuqn`1
x ` phvqn`1

y

‰

“ 0,

phuqn`1 ´ phuqn

∆t
`

ˆ

2ĥûu1 ` ĥpu1q2 ` h1u2
`

ph1q2

2
`
`

ĥ` Z ´ aptq
˘

h1

ε2

˙n

x

`pĥûv1 ` ĥu1v ` h1uvqny `
aptq

ε2
ph1qn`1

x “
1

ε

”

phvqn`1
´ ĥv̂

ı

`
1

ε2
ph1qn`1

x Z,

phvqn`1 ´ phvqn

∆t
`

ˆ

2ĥv̂v1 ` ĥpv1q2 ` h1v2
`

ph1q2

2
`
`

ĥ` Z ´ aptq
˘

h1

ε2

˙n

y

`pĥûv1 ` ĥu1v ` h1uvqnx `
aptq

ε2
ph1qn`1

y “ ´
1

ε

”

phuqn`1
´ ĥû

ı

`
1

ε2
ph1qn`1

y Z.

(3.6)

Introducing the notation Rn :“ pRh1,n, Rhu,n, Rhv,nqJ we rewrite the system (3.6) as

ph1qn`1 ´ ph1qn

∆t
´Rh1,n

` p1´ αq
“

phuqn`1
x ` phvqn`1

y

‰

“ 0,

phuqn`1 ´ phuqn

∆t
´Rhu,n

`
aptq

ε2
ph1qn`1

x “
1

ε

”

phvqn`1
´ ĥv̂

ı

`
1

ε2
ph1qn`1

x Z,

phvqn`1 ´ phvqn

∆t
´Rhv,n

`
aptq

ε2
ph1qn`1

y “ ´
1

ε

”

phuqn`1
´ ĥû

ı

`
1

ε2
ph1qn`1

y Z,

(3.7)

where

Rh1,n :“ ´α
“

phu1 ` h1ûqnx ` phv
1
` h1v̂qny

‰

,

Rhu,n :“ ´

ˆ

2ĥûu1 ` ĥpu1q2 ` h1u2
`

ph1q2

2
`
`

ĥ` Z ´ aptq
˘

h1

ε2

˙n

x

´ pĥûv1 ` ĥu1v ` h1uvqny ,

Rhv,n :“ ´pĥûv1 ` ĥu1v ` h1uvqnx ´

ˆ

2ĥv̂v1 ` ĥpv1q2 ` h1v2
`

ph1q2

2
`
`

ĥ` Z ´ aptq
˘

h1

ε2

˙n

y

.

The remaining part of Section 3 is organized as follows. In Section 3.3 we describe the CU
spatial discretization of the nonstiff flux terms. In Section 3.4 we present and analyze the fully-
discrete second-order IMEX WB-AP CU scheme for the studied RSW equations.

3.3 Central-Upwind (CU) Discretization of the Nonstiff Flux Terms

We use the second-order finite volume CU scheme to discretize the nonstiff fluxes (3.2). To this
end we introduce a Cartesian mesh with the uniform (for the sake of simplicity) cells Cj,k :“
rxj´ 1

2
, xj` 1

2
s ˆ ryk´ 1

2
, yk` 1

2
s of size

ˇ

ˇCj,k
ˇ

ˇ “ ∆x∆y centered at the grid points pxj, ykq with xj :“

pxj` 1
2
` xj´ 1

2
q{2 and yk :“ pyk` 1

2
` yk´ 1

2
q{2. First, we use the following notation for the point

values of ĥ at the cell centers and cell interfaces:

ĥj,k :“ ĥpxj, ykq, ĥj` 1
2
,k :“ ĥpxj` 1

2
, ykq, ĥj,k` 1

2
:“ ĥpxj, yk` 1

2
q,
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and analogous notations for û and v̂. For the point values of the bottom topography at the cell
corners we set

Zj` 1
2
,k` 1

2
:“ Zpxj` 1

2
, yk` 1

2
q, (3.8)

and the point values of Z at the cell centers and cell interfaces are approximated using a continuous
bilinear interpolant; see [23,26]:

Zj,k :“
1

4

´

Zj` 1
2
,k` 1

2
` Zj` 1

2
,k´ 1

2
` Zj´ 1

2
,k` 1

2
` Zj´ 1

2
,k´ 1

2

¯

,

Zj` 1
2
,k :“

1

2

´

Zj` 1
2
,k` 1

2
` Zj` 1

2
,k´ 1

2

¯

, Zj,k` 1
2

:“
1

2

´

Zj` 1
2
,k` 1

2
` Zj´ 1

2
,k` 1

2

¯

.

Remark 3.1 We note that formula (3.8) is only valid when the bottom topography function is
continuous. In the case of discontinuous Z, we refer the reader to [23, 26].

We assume that at time level t “ tn the numerical solution is realized in terms of its cell
averages denoted by

U
n

j,k :«
1

∆x∆y

ĳ

Cj,k

Upx, y, tnq dx dy.

In each cell we approximate the flux contribution R :“ ´ rF pUqx ´ rGpUqy by

Rn
j,k :“ ´

rF
n

j` 1
2
,k ´

rF
n

j´ 1
2
,k

∆x
´

rG
n

j,k` 1
2
´ rG

n

j,k´ 1
2

∆y
, (3.9)

where rF
n

j` 1
2
,k and rG

n

j,k` 1
2

are the CU numerical fluxes in the x- and y-directions, respectively. We

use the CU numerical fluxes from [29] (see also [15] for a one-dimensional first-order version):

rF
n

j` 1
2
,k “

a`
j` 1

2
,k
rF pUE

j,kq ´ a
´

j` 1
2
,k
rF pUW

j`1,kq

a`
j` 1

2
,k
´ a´

j` 1
2
,k

`

a`
j` 1

2
,k
a´
j` 1

2
,k

a`
j` 1

2
,k
´ a´

j` 1
2
,k

“

UW
j`1,k ´UE

j,k

‰

,

rG
n

j,k` 1
2
“

b`
j,k` 1

2

rGpUN
j,kq ´ b

´

j,k` 1
2

rGpUS
j,k`1q

b`
j,k` 1

2

´ b´
j,k` 1

2

`

b`
j,k` 1

2

b´
j,k` 1

2

b`
j,k` 1

2

´ b´
j,k` 1

2

“

US
j,k`1 ´UN

j,k

‰

.

(3.10)

Note that all of the quantities on the right-hand side (RHS) are computed at time level tn, but
we omit this information for the sake of brevity. We will do the same in the rest of the paper: all
of the indexed quantities in which the time level is not explicitly specified, will be assumed to be
taken at t “ tn.

In (3.10) UE
j,k, U

W
j,k, U

N
j,k and US

j,k stand for the point values of U , which are supposed to be

reconstructed from the given cell averages
 

ph1qj,k, phuqj,k, phvqj,k
(

. In order to ensure the WB
property of the resulting scheme, we perform the reconstruction in the equilibrium variables w111,
which remain constant (in fact, zero) at the steady states, which guarantees the WB property of
the resulting scheme as shown in Section 3.4.1. To this end we first compute the point values of
u1 and v1 at the cell centers:

u1j,k “
phuqj,k

h1j,k ` ĥj,k
´ ûj,k, v1j,k “

phvqj,k

h1j,k ` ĥj,k
´ v̂j,k,
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and then construct a global piecewise linear reconstruction

Ăw111px, yq :“ w111
j,k ` pw

111
xqj,kpx´ xjq ` pw

111
yqj,k

py ´ ykq, px, yq P Cj,k, (3.11)

where pw111
xqj,k and pw111

yqj,k
are at least first-order approximations of the derivatives w111

xpxj, yk, t
nq

and w111
ypxj, yk, t

nq, respectively. In order to ensure a non-oscillatory nature of the reconstruc-
tion (3.11), the slopes are supposed to be computed using nonlinear limiter. In the numerical
experiments reported in Section 4 we have used the generalized minmod limiter [31,35,40,42]:

pw111
xqj,k “ minmod

ˆ

θ
w111
j,k ´w111

j´1,k

∆x
,
w111
j`1,k ´w111

j´1,k

2∆x
, θ

w111
j`1,k ´w111

j,k

∆x

˙

,

pw111
yqj,k “ minmod

ˆ

θ
w111
j,k ´w111

j,k´1

∆y
,
w111
j,k`1 ´w111

j,k´1

2∆y
, θ

w111
j,k`1 ´w111

j,k

∆y

˙

,

(3.12)

where the minmod function, defined by

minmodpϕ1, ϕ2, . . .q :“

$

’

’

’

&

’

’

’

%

min
k
tϕku, if ϕk ą 0 @k,

max
k
tϕku, if ϕk ă 0 @k,

0, otherwise,

is applied in a componentwise manner. In (3.12) the parameter θ P r1, 2s helps to control the
amount of numerical diffusion: larger values of θ correspond to less diffusive, but more oscillatory
reconstructions. In the numerical examples reported in Section 4, we have taken θ “ 2.

Applying the reconstruction (3.11) we obtain the following point values of w111:

pw111
q
E
j,k “

Ăw111pxj` 1
2
, ykq “ w111

j,k `
∆x

2
pw111

xqj,k, pw111
q
W
j,k “

Ăw111pxj´ 1
2
, ykq “ w111

j,k ´
∆x

2
pw111

xqj,k,

pw111
q
N
j,k “

Ăw111pxj, yk` 1
2
q “ w111

j,k `
∆y

2
pw111

yqj,k, pw111
q
S
j,k “

Ăw111pxj, yk´ 1
2
q “ w111

j,k ´
∆y

2
pw111

yqj,k,

which, together with the corresponding point values of the given steady state, are used to evaluate

phuqEj,k “
`

ĥj` 1
2
,k ` ph

1
q
E
j,k

˘`

ûj` 1
2
,k ` pu

1
q
E
j,k

˘

, phvqEj,k “
`

ĥj` 1
2
,k ` ph

1
q
E
j,k

˘`

v̂j` 1
2
,k ` pv

1
q
E
j,k

˘

,

phuqWj,k “
`

ĥj´ 1
2
,k ` ph

1
q
W
j,k

˘`

ûj´ 1
2
,k ` pu

1
q
W
j,k

˘

, phvqWj,k “
`

ĥj´ 1
2
,k ` ph

1
q
W
j,k

˘`

v̂j´ 1
2
,k ` pv

1
q
W
j,k

˘

,

phuqNj,k “
`

ĥj,k` 1
2
` ph1qNj,k

˘`

ûj,k` 1
2
` pu1qNj,k

˘

, phvqNj,k “
`

ĥj,k` 1
2
` ph1qNj,k

˘`

v̂j,k` 1
2
` pv1qNj,k

˘

,

phuqSj,k “
`

ĥj,k´ 1
2
` ph1qSj,k

˘`

ûj,k´ 1
2
` pu1qSj,k

˘

, phvqSj,k “
`

ĥj,k´ 1
2
` ph1qSj,k

˘`

v̂j,k´ 1
2
` pv1qSj,k

˘

.

Finally, a˘
j` 1

2
,k

and b˘
j,k` 1

2

, required in the computation of the numerical fluxes (3.10), are the

one-sided local propagation speeds, which we estimate using the smallest and largest eigenvalues
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of the Jacobians B rF {BU and B rG{BU , (3.3) and (3.4), as follows:

a`
j` 1

2
,k
“ max

#

uE
j,k `

d

p1´ αq
`

uE
j,k

˘2
` α

ph1qEj,k ` ĥj` 1
2
,k ` Zj` 1

2
,k ´ a

n

ε2
,

uW
j`1,k `

d

p1´ αq
`

uW
j`1,k

˘2
` α

ph1qWj`1,k ` ĥj` 1
2
,k ` Zj` 1

2
,k ´ a

n

ε2
, 0

+

,

a´
j` 1

2
,k
“ min

#

uE
j,k ´

d

p1´ αq
`

uE
j,k

˘2
` α

ph1qEj,k ` ĥj` 1
2
,k ` Zj` 1

2
,k ´ a

n

ε2
,

uW
j`1,k ´

d

p1´ αq
`

uW
j`1,k

˘2
` α

ph1qWj`1,k ` ĥj` 1
2
,k ` Zj` 1

2
,k ´ a

n

ε2
, 0

+

,

b`
j,k` 1

2

“ max

#

vN
j,k `

d

p1´ αq
`

vN
j,k

˘2
` α

ph1qNj,k ` ĥj,k` 1
2
` Zj,k` 1

2
´ an

ε2
,

vS
j,k`1 `

d

p1´ αq
`

vS
j,k`1

˘2
` α

ph1qSj,k`1 ` ĥj,k` 1
2
` Zj,k` 1

2
´ an

ε2
, 0

+

,

b´
j,k` 1

2

“ min

#

vN
j,k ´

d

p1´ αq
`

vN
j,k

˘2
` α

ph1qNj,k ` ĥj,k` 1
2
` Zj,k` 1

2
´ an

ε2
,

vS
j,k`1 ´

d

p1´ αq
`

vS
j,k`1

˘2
` α

ph1qSj,k`1 ` ĥj,k` 1
2
` Zj,k` 1

2
´ an

ε2
, 0

+

,

(3.13)

where an :“ aptnq.

3.3.1 Numerical Diffusion of the CU Discretization (3.9)–(3.13)

In this section we analyze the leading order of the numerical diffusion present in the CU discretiza-
tion (3.9)–(3.13). To this end we first rewrite the CU fluxes (3.10) as

rF
n

j` 1
2
,k “

rF pUn
j,kq `

rF pUn
j`1,kq

2
`Dn

j` 1
2
,k,

rG
n

j,k` 1
2
“

rGpUn
j,kq `

rGpUn
j,k`1q

2
`Dn

j,k` 1
2
,

(3.14)

where the corresponding numerical diffusion terms, denoted by Dn
j` 1

2
,k and Dn

j,k` 1
2
, are

Dn
j` 1

2
,k “

a`
j` 1

2
,k

2pa`
j` 1

2
,k
´ a´

j` 1
2
,k
q

”

2 rF pUE
j,kq ´

rF pUn
j,kq ´

rF pUn
j`1,kq

ı

´

a´
j` 1

2
,k

2pa`
j` 1

2
,k
´ a´

j` 1
2
,k
q

”

2 rF pUW
j`1,kq ´

rF pUn
j,kq ´

rF pUn
j`1,kq

ı

(3.15a)
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`

a`
j` 1

2
,k
a´
j` 1

2
,k

pa`
j` 1

2
,k
´ a´

j` 1
2
,k
q

`

UW
j`1,k ´UE

j,k

˘

,

Dn
j,k` 1

2
“

b`
j,k` 1

2

2pb`
j,k` 1

2

´ b´
j,k` 1

2

q

”

2 rGpUN
j,kq ´

rGpUn
j,kq ´

rGpUn
j,k`1q

ı

´

b´
j,k` 1

2

2pb`
j,k` 1

2

´ b´
j,k` 1

2

q

”

2 rGpUS
j,k`1q ´

rGpUn
j,kq ´

rGpUn
j,k`1q

ı

(3.15b)

`

b`
j,k` 1

2

b´
j,k` 1

2

pb`
j,k` 1

2

´ b´
j,k` 1

2

q

`

US
j,k`1 ´UN

j,k

˘

.

We proceed by formulating the following asymptotic expansion result.

Proposition 3.2 In both the x- and y-directions the leading orders of the numerical diffusion are
Opε2q, Opεq and Opεq for the first, second and third components, respectively. Furthermore, Rn

j,k

defined in (3.9) can be written as

Rn
j,k “ ´Dx

rF n
j,k ´Dy

rGn
j,k `Qn

j,k, (3.16)

where Dx and Dy are the standard second-order central difference operators and given by

Dxϕj,k :“
ϕj`1,k ´ ϕj´1,k

2∆x
, Dyϕj,k :“

ϕj,k`1 ´ ϕj,k´1

2∆y
. (3.17)

The total numerical diffusion is

Qn
j,k :“

Dn
j` 1

2
,k ´Dn

j´ 1
2
,k

∆x
`

Dn
j,k` 1

2
´Dn

j,k´ 1
2

∆y
,

where each component is expanded with respect to ε as follows:

Qh1,n
j,k “ ε2Qh1,p2q,n

` ε3Qh1,p3q,n
` ¨ ¨ ¨ ,

Qhu,n
j,k “ εQhu,p1q,n

` ε2Qhu,p2q,n
` ¨ ¨ ¨ ,

Qhv,n
j,k “ εQhv,p1q,n

` ε2Qhv,p2q,n
` ¨ ¨ ¨ .

(3.18)

The proof of this proposition follows the lines of the proof in [32, Section 3.4.1] with several
obvious changes; see Appendix A.

Remark 3.1 We would like to stress that all of the terms in the expansions (3.18) are propor-
tional to ∆2

max, where ∆max :“ maxp∆x,∆yq, since they are introduced by the second-order CU
discretization.
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3.4 Fully Discrete Well-Balanced Asymptotic Preserving Schemes

In order to derive a fully discrete WB-AP scheme we first solve the second and third equations in
(3.7) for phuqn`1 and phvqn`1 to obtain

ph1qn`1
“ ph1qn `∆tRh1,n

´∆tp1´ αq
“

phuqn`1
x ` phvqn`1

y

‰

, (3.19a)

phuqn`1
“ ĥû`

1

K

”

ĥpu1qn ` ph1uqn `
∆t

ε

`

ĥpv1qn ` ph1vqn
˘

`∆t
´

Rhu,n
`

∆t

ε
Rhv,n

¯

`
pZ ´ anq∆t

ε2

´

ph1qn`1
x `

∆t

ε
ph1qn`1

y

¯ı

, (3.19b)

phvqn`1
“ ĥv̂ `

1

K

”

ĥpv1qn ` ph1vqn ´
∆t

ε

`

ĥpu1qn ` ph1uqn
˘

`∆t
´

Rhv,n
´

∆t

ε
Rhu,n

¯

`
pZ ´ anq∆t

ε2

´

ph1qn`1
y ´

∆t

ε
ph1qn`1

x

¯ı

, (3.19c)

where K :“ 1 ` p∆t{εq2. Differentiating equations (3.19b) and (3.19c) with respect to x and y,
respectively, and then substituting the obtained results into (3.19a) to end up with the following
elliptic equation for ph1qn`1:

ph1qn`1
`
pZ ´ anqp1´ αq

rK

`

ph1qn`1
xx ` ph1qn`1

yy

˘

`
1´ α

rK

”

ph1qn`1
x Zx ` ph

1
q
n`1
y Zy `

∆t

ε

`

ph1qn`1
y Zx ´ ph

1
q
n`1
x Zy

˘

ı

“ ph1qn `∆tRh1,n
´

∆tp1´ αq

K

”

pĥu1 ` h1uqnx ` pĥv
1
` h1vqny `

∆t

ε

`

pĥv1 ` h1vqnx

´ pĥu1 ` h1uqny
˘

`∆t
`

Rhu,n
x `Rhv,n

y

˘

`
p∆tq2

ε

`

Rhv,n
x ´Rhu,n

y

˘

ı

,

(3.20)

where rK :“ 1 ` pε{∆tq2. In order to discretize equation (3.20) we use the second-order CU
numerical fluxes given by equations (3.9)–(3.13) to approximate the corresponding nonstiff flux
terms Rh1,n, Rhu,n and Rhv,n. Further, the spatial derivatives in (3.20) are approximated using the
standard second-order central difference operators Dx and Dy defined in (3.17). This results in

ph1q
n`1

j,k `
pZj,k ´ a

nqp1´ αq

rK
r∆ ph1q

n`1

j,k

`
1´ α

rK

”´

Dx ´
∆t

ε
Dy

¯

Zj,kDx ph
1q
n`1

j,k `

´

Dy `
∆t

ε
Dx

¯

Zj,kDy ph
1q
n`1

j,k

ı

“ ph1q
n

j,k `∆tRh1,n
j,k ´

∆tp1´ αq

K

”

Dxpĥu
1
` h1uqnj,k `Dypĥv

1
` h1vqnj,k

`
∆t

ε

´

Dxpĥv
1
` h1vqnj,k ´Dypĥu

1
` h1uqnj,k

¯

`∆t
´

DxRhu,n
j,k `DyRhv,n

j,k

¯

`
p∆tq2

ε

´

DxRhv,n
j,k ´DyRhu,n

j,k

¯ ı

,

(3.21)

where Rn
j,k “

`

Rh1,n
j,k ,R

hu,n
j,k ,Rhv,n

j,k

˘J
is defined in (3.9), (3.10) and r∆ is the discrete five-point

Laplacian:

r∆ϕj,k :“
ϕj`1,k ´ 2ϕj,k ` ϕj´1,k

p∆xq2
`
ϕj,k`1 ´ 2ϕj,k ` ϕj,k´1

p∆yq2
.
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Substituting the solution ph1q
n`1

j,k of (3.21) into equations (3.19b) and (3.19c) and applying the
standard central differences yield

phuq
n`1

j,k “ ĥj,kûj,k `
1

K

”

`

ĥu1 ` h1u
˘n

j,k
`

∆t

ε

`

ĥv1 ` h1v
˘n

j,k
`∆t

´

Rhu,n
j,k `

∆t

ε
Rhv,n
j,k

¯

`
pZj,k ´ a

nq∆t

ε2

´

Dx ph
1q
n`1

j,k `
∆t

ε
Dy ph

1q
n`1

j,k

¯ı

, (3.22)

phvq
n`1

j,k “ ĥj,kv̂j,k `
1

K

”

`

ĥv1 ` h1v
˘n

j,k
´

∆t

ε

`

ĥu1 ` h1u
˘n

j,k
`∆t

´

Rhv,n
j,k ´

∆t

ε
Rhu,n
j,k

¯

`
pZj,k ´ a

nq∆t

ε2

´

Dy ph
1q
n`1

j,k ´
∆t

ε
Dx ph

1q
n`1

j,k

¯ı

. (3.23)

Notice that the scheme (3.21)–(3.23) is second-order accurate in space, but only first-order
accurate in time. In order to increase a temporal accuracy to the second order, we implement a
two-stage globally stiffly accurate IMEX Runge-Kutta scheme ARS(2,2,2), which can be described
by the following Butcher tableau:

0 0 0 0 0 0 0

γ γ 0 0 0 γ 0

1 1´ 1
2γ

1
2γ

0 0 1´ γ γ

1´ 1
2γ

1
2γ

0 0 1´ γ γ

where γ “ 1´1{
?

2; see [1]. Details on the implementation of the ARS(2,2,2) method are provided
in Appendix B.

3.4.1 Well-Balanced Property

In this section we prove that the proposed WB-AP CU scheme is indeed WB. To this end we
assume that the solution at the time level t “ tn is at the discrete equilibrium, that is,

ph1q
,n

j,k ” 0, pu1qnj,k ” 0, pv1qnj,k ” 0, for all j, k. (3.24)

Consequently, from (3.2), (3.9) and (3.10) it follows that

Rh1,n
j,k “ 0, Rhu,n

j,k “ 0, Rhv,n
j,k “ 0, for all j, k.

Hence, the linear algebraic system (3.21) for ph1qj,k reduces to

ph1q
n`1

j,k `
1´ α

rK

„

pZj,k ´ a
n
qr∆ ph1q

n`1

j,k

` pDx ´
∆t

ε
DyqZj,kDx ph

1q
n`1

j,k ` pDy `
∆t

ε
DxqZj,kDy ph

1q
n`1

j,k



“ 0,

which has a unique solution

ph1q
n`1

j,k ” 0, for all j, k. (3.25)

Finally, substituting (3.24)–(3.25) into (3.22) and (3.23) yields

phuq
n`1

j,k “ ĥj,kûj,k, phvq
n`1

j,k “ ĥj,kv̂j,k, for all j, k,
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which implies that
pu1qn`1

j,k ” 0, pv1qn`1
j,k ” 0, for all j, k.

This together with (3.25) completes the proof of the WB property of the proposed scheme.

3.4.2 The Discrete Low Froude Number Limit

In this section we study the discrete low Froude number limit and prove the AP property of the
WB-AP CU scheme.

We assume that the geostrophic steady-state ŵ admits the same discrete asymptotic expansions
as in (2.9):

ĥJ,K “ ĥ
p0q
J,K ` εĥ

p1q
J,K ` ε

2ĥ
p2q
J,K ` ¨ ¨ ¨ ,

ûJ,K “ û
p0q
J,K ` εû

p1q
J,K ` ε

2û
p2q
J,K ` ¨ ¨ ¨ ,

v̂J,K “ v̂
p0q
J,K ` εv̂

p1q
J,K ` ε

2v̂
p2q
J,K ` ¨ ¨ ¨ ,

(3.26)

where pJ,Kq is either pj, kq, pj ` 1
2
, kq or pj, k ` 1

2
q. Further, at time level t “ tn, the computed

solution satisfies the following discrete analogs of the asymptotic expansions (2.8) and (2.11):

hnj,k “ h
p0q,n
j,k ` εh

p1q,n
j,k ` ε2h

p2q,n
j,k ` ¨ ¨ ¨ ,

unj,k “ u
p0q,n
j,k ` εu

p1q,n
j,k ` ε2u

p2q,n
j,k ` ¨ ¨ ¨ ,

vnj,k “ v
p0q,n
j,k ` εv

p1q,n
j,k ` ε2v

p2q,n
j,k ` ¨ ¨ ¨ ,

ph1q
n

j,k “ ε2
ph1q

p2q,n
j,k ` ¨ ¨ ¨ ,

pu1qnj,k “ εpu1q
p1q,n
j,k ` ε2

pu1q
p2q,n
j,k ` ¨ ¨ ¨ ,

pv1qnj,k “ εpv1q
p1q,n
j,k ` ε2

pv1q
p2q,n
j,k ` ¨ ¨ ¨ ,

ph1q ij,k “ ε2
ph1q

i,p2q
j,k ` ¨ ¨ ¨ ,

pu1q ij,k “ εpu1q
i,p1q
j,k ` ε2

pu1q
i,p2q
j,k ` ¨ ¨ ¨ ,

pv1q ij,k “ εpv1q
i,p1q
j,k ` ε2

pv1q
i,p2q
j,k ` ¨ ¨ ¨ ,

(3.27)

where i P tE,W,N, Su. We also use the definition of aptq in (3.5) and the fact that

ĥp0q ` Z “ Const (3.28)

which can be concluded from the first two equations in (2.10), to obtain the following expansion
for an “ aptnq:

an “ ĥp0q ` Z ` εap1q,n ` ε2ap2q,n ` ¨ ¨ ¨ , (3.29)

where ap1q,n and ap2q,n are constants.

Proposition 3.3 Assume that in addition to the asymptotic expansions (3.26)–(3.29), the discrete
analogs of the first two equations in (2.15),

pu1q
p1q,n
j,k “ ´Dyph

1
q
p2q,n
j,k and pv1q

p1q,n
j,k “ Dxph

1
q
p2q,n
j,k ,

are satisfied for all j, k.
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Then the numerical solution at time level t “ tn`1 can be expanded with respect to ε as follows:

ph1q
n`1

j,k “ ε2
ph1q

p2q,n`1
j,k ` ¨ ¨ ¨ ,

pu1qn`1
j,k “ εpu1q

p1q,n`1
j,k ` ε2

pu1q
p2q,n`1
j,k ` ¨ ¨ ¨ ,

pv1qn`1
j,k “ εpv1q

p1q,n`1
j,k ` ε2

pv1q
p2q,n`1
j,k ` ¨ ¨ ¨ ,

(3.30)

and the fully discrete scheme provides a consistent approximation of the system (2.15).

Proof: We recall that 1´ α “ 1´ ε2 “ Op1q. Using the definitions of rK and K yields

1

rK
“

„

1´
´ ε

∆t

¯2

` ¨ ¨ ¨



“ Op1q, 1

K
“

´ ε

∆t

¯2
„

1´
´ ε

∆t

¯2

` ¨ ¨ ¨



“ Opε2
q.

Moreover, one may easily verify that Rh1,n
j,k “ Opε2q, Rhu,n

j,k “ Opεq and Rhv,n
j,k “ Opεq.

Equation (3.21) implies that

A ph1q
n`1

:“

„

I `
1´ α

rK

´

pZ ´ anqr∆` pDx ´
∆t

ε
DyqZDx ` pDy `

∆t

ε
DxqZDy

¯



ph1q
n`1

“ Opε2
q,

where A is the linear operator whose corresponding matrix is pentadiagonal and strictly diagonally
dominant. Therefore, it is nonsingular (with eigenvalues bounded away from zero independently of
ε), and hence the first expansion in equation (3.30) is validated. Using this expansion in equations
(3.22) and (3.23) leads to

phuqn`1
j,k “ ĥj,kûj,k `Opεq, phvqn`1

j,k “ ĥj,kv̂j,k `Opεq.

This in turn implies the second and the third expansions in (3.30).
Equipped with the established expansions in (3.30), we turn to the asymptotic analysis of the

fully discrete WB-AP scheme. To this end we compare ε-like terms. For Opεq terms appearing in
(3.22) and (3.23) we obtain

pu1q
p1q,n`1
j,k “ ´Dyph

1
q
p2q,n`1
j,k , pv1q

p1q,n`1
j,k “ Dxph

1
q
p2q,n`1
j,k , (3.31)

which are consistent discrete approximations of the first two limiting equations in (2.15).
In order to derive the discrete versions of the third and fourth equations in (2.15) we first

rewrite equation (3.23) as

`

ĥv1 ` h1v
˘n

j,k
`∆tRhv,n

j,k “K
”

phvq
n`1

j,k ´ ĥj,kv̂j,k

ı

`
∆t

ε

`

ĥu1 ` h1u
˘n

j,k
`
p∆tq2

ε
Rhu,n
j,k

´
pZj,k ´ a

nq∆t

ε2

´

Dy ph
1q
n`1

j,k ´
∆t

ε
Dx ph

1q
n`1

j,k

¯

.

(3.32)

Substituting (3.32) into equation (3.22) yields

phuq
n`1

j,k ´ ĥj,kûj,k “
`

ĥu1`h1u
˘n

j,k
`∆tRhu,n

j,k `
∆t

ε

´

phvq
n`1

j,k ´ ĥj,kv̂j,k

¯

`
pZj,k ´ a

nq∆t

ε2
Dx ph

1q
n`1

j,k ,

which further implies that

phuq
n`1

j,k ´ phuq
n

j,k

∆t
´Rhu,n

j,k “
1

ε

´

phvq
n`1

j,k ´ ĥj,kv̂j,k

¯

`
Zj,k ´ a

n

ε2
Dx ph

1q
n`1

j,k . (3.33)
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We then substitute (3.16) and (3.31) into (3.33), take into account that v̂
p0q
j,k “ Dxĥ

p1q
j,k `Op∆2

maxq

and collect Opεq terms:

ĥ
p0q
j,ku

p1q,n`1
j,k ´ ĥ

p0q
j,ku

p1q,n
j,k

∆t
` 2Dx

´

ĥ
p0q
j,k û

p0q
j,kpu

1
q
p1q,n
j,k

¯

`Dy

´

ĥ
p0q
j,k û

p0q
j,kpv

1
q
p1q,n
j,k ` ĥ

p0q
j,kpu

1
q
p1q,n
j,k v̂

p0q
j,k

¯

“ ĥ
p0q
j,kpv

1
q
p2q,n`1
j,k `Qhu,p1q,n

j,k `Dx

”

`

ĥ
p1q
j,k ´ a

p1q,n
˘`

ph1q
p2q,n`1
j,k ´ ph1q

p2q,n
j,k

˘

ı

.

(3.34)

Similarly, we can derive

ĥ
p0q
j,kv

p1q,n`1
j,k ´ ĥ

p0q
j,kv

p1q,n
j,k

∆t
`Dx

´

ĥ
p0q
j,k û

p0q
j,kpv

1
q
p1q,n
j,k ` ĥ

p0q
j,kpu

1
q
p1q,n
j,k v̂

p0q
j,k

¯

` 2Dy

´

ĥ
p0q
j,k v̂

p0q
j,k pv

1
q
p1q,n
j,k

¯

“ ´ĥ
p0q
j,kpu

1
q
p2q,n`1
j,k `Qhv,p1q,n

j,k `Dy

”

`

ĥ
p1q
j,k ´ a

p1q,n
˘`

ph1q
p2q,n`1
j,k ´ ph1q

p2q,n
j,k

˘

ı

.

(3.35)

We note that equations (3.34) and (3.35) are consistent discretizations of the momentum equations,
that is, the third and fourth equations in (2.15), respectively. Indeed, the last two terms on the

RHSs of (3.34) and (3.35) represent the numerical diffusion: while Qhu,p1q,n
j,k and Qhv,p1q,n

j,k are
Op∆2

maxq diffusion expansion coefficients from (3.18), the other two terms are temporal diffusion
terms proportional to ∆t.

Finally, we derive the equation for ph1q
p2q,n`1
j,k by considering Opε2q terms in equation (3.21).

Recalling that α “ ε2, see Section 3.1, we derive

ph1q
p2q,n`1
j,k ´ ĥ

p0q
j,k

r∆ph1q
p2q,n`1
j,k `DxZj,kDxph

1
q
p2q,n`1
j,k `DyZj,kDyph

1
q
p2q,n`1
j,k

“ ph1q
p2q,n
j,k ´Dx

´

ĥ
p0q
j,kpv

1
q
p1q,n
j,k

¯

`Dy

´

ĥ
p0q
j,kpu

1
q
p1q,n
j,k

¯

` 2∆tDxDy

´

ĥ
p0q
j,k v̂

p0q
j,k pv

1
q
p1q,n
j,k ´ ĥ

p0q
j,k û

p0q
j,kpu

1
q
p1q,n
j,k

¯

`∆tD2
x

´

ĥ
p0q
j,k û

p0q
j,kpv

1
q
p1q,n
j,k ` ĥ

p0q
j,k v̂

p0q
j,k pu

1
q
p1q,n
j,k

¯

´∆tD2
y

´

ĥ
p0q
j,k û

p0q
j,kpv

1
q
p1q,n
j,k ` ĥ

p0q
j,k v̂

p0q
j,k pu

1
q
p1q,n
j,k

¯

`∆t
´

Qh1,p2q,n
j,k ´DxQhv,p1q,n

j,k `DyQhu,p1q,n
j,k

¯

,

which can be rewritten as

ph1q
p2q,n`1
j,k ´ ph1q

p2q,n
j,k

∆t
`

1

∆t

”

Dxĥ
p0q
j,kDxph

1
q
p2q,n`1
j,k ´Dx

´

ĥ
p0q
j,kDxph

1
q
p2q,n`1
j,k

¯

`Dyĥ
p0q
j,kDyph

1
q
p2q,n`1
j,k ´Dy

´

ĥ
p0q
j,kDyph

1
q
p2q,n`1
j,k

¯

`DxZj,kDxph
1
q
p2q,n`1
j,k `DyZj,kDyph

1
q
p2q,n`1
j,k

ı

“ ´
1

∆t

”

Dx

´

ĥ
p0q
j,kpv

1
q
p1q,n
j,k

¯

´Dy

´

ĥ
p0q
j,kpu

1
q
p1q,n
j,k

¯ı

` 2DxDy

´

ĥ
p0q
j,k v̂

p0q
j,k pv

1
q
p1q,n
j,k ´ ĥ

p0q
j,k û

p0q
j,kpu

1
q
p1q,n
j,k

¯

`D2
x

´

ĥ
p0q
j,k û

p0q
j,kpv

1
q
p1q,n
j,k ` ĥ

p0q
j,k v̂

p0q
j,k pu

1
q
p1q,n
j,k

¯

´D2
y

´

ĥ
p0q
j,k û

p0q
j,kpv

1
q
p1q,n
j,k ` ĥ

p0q
j,k v̂

p0q
j,k pu

1
q
p1q,n
j,k

¯

`Qh1,p2q,n
j,k ´DxQhv,p1q,n

j,k `DyQhu,p1q,n
j,k .

(3.36)
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We then substitute (3.28) and (3.31) into equation (3.36) and obtain

ph1q
p2q,n`1
j,k ´ ph1q

p2q,n
j,k

∆t
´

Dx

´

ĥ
p0q
j,kpv

1q
p1q,n`1
j,k ´ ĥ

p0q
j,kpv

1q
p1q,n
j,k

¯

∆t

`

Dy

´

ĥ
p0q
j,kpu

1q
p1q,n`1
j,k ´ ĥ

p0q
j,kpu

1q
p1q,n
j,k

¯

∆t
“ 2DxDy

´

ĥ
p0q
j,k v̂

p0q
j,k pv

1
q
p1q,n
j,k ´ ĥ

p0q
j,k û

p0q
j,kpu

1
q
p1q,n
j,k

¯

`D2
x

´

ĥ
p0q
j,k û

p0q
j,kpv

1
q
p1q,n
j,k ` ĥ

p0q
j,k v̂

p0q
j,k pu

1
q
p1q,n
j,k

¯

´D2
y

´

ĥ
p0q
j,k û

p0q
j,kpv

1
q
p1q,n
j,k ` ĥ

p0q
j,k v̂

p0q
j,k pu

1
q
p1q,n
j,k

¯

`Qh1,p2q,n
j,k ´DxQhv,p1q,n

j,k `DyQhu,p1q,n
j,k ,

(3.37)

which is a consistent discretization of the mass equation, that is, the last equation in (2.15). Note
that the last three terms on the RHS of (3.37) are Op∆2

maxq diffusion expansion coefficients from
(3.18).

In summary, the proposed numerical scheme yields the discrete limiting equations (3.31), (3.34),
(3.35) and (3.37), which are consistent approximations of the system (2.15). �

4 Numerical Examples

In this section we demonstrate the performance of the proposed WB-AP scheme on a number of
numerical examples. In what follows we refer to our new WB-AP scheme as the NEW scheme.
The obtained results are compared with those computed by the the non-WB AP scheme from [32],
which will be referred to as the OLD scheme.

The time step is adaptively determined using the CFL condition for the nonstiff hyperbolic
system. We set the CFL number to be 0.2, namely, we take

∆t “ 0.2 min

"

∆x

amax

,
∆y

bmax

*

,

where

amax :“ max
j,k

!

max
´

a`
j` 1

2
,k
,´a´

j` 1
2
,k

¯)

, bmax :“ max
j,k

!

max
´

b`
j,k` 1

2

,´b´
j,k` 1

2

¯)

,

and a˘
j` 1

2
,k

and b˘
j,k` 1

2

are defined in (3.13).

In all of the examples below the computational domain r´1, 1s ˆ r´1, 1s has been covered by
an 80ˆ 80 uniform mesh (in the second part of Example 3, we also use a finer 480ˆ 480 uniform
mesh). We use free boundary conditions in both the x- and y-directions.

Discrete Steady Velocity Fields Correction

Before conducting the numerical experiments, we would like to point out at the necessity of
preparing the steady velocity field, which should satisfy the condition (2.3a) at the discrete level.
To this end, we first notice that (2.3a) implies that there exists a potential ψ such that

ĥû “ ψy, ĥv̂ “ ´ψx,
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which, in turn, gives the following elliptic equation for ψ:

∆ψ “ ´pĥv̂qx ` pĥûqy. (4.1)

We then discretize equation (4.1) using the standard central differences,

r∆ψj,k “ ´Dx

`

ĥj,kv̂j,k
˘

`Dy

`

ĥj,kûj,k
˘

, (4.2)

and solve the linear algebraic system (4.2) for ψj,k. Note that the discrete quantities on the RHS

of (4.2) are given by ĥj,k :“ ĥpxj, ykq, ûj,k :“ ûpxj, ykq and v̂j,k :“ v̂pxj, ykq.

Once
 

ψj,k
(

are available, we replace ûj,k and v̂j,k with the following modified discrete steady
velocities:

ˆ̂uj,k “
Dyψj,k

ĥj,k
, ˆ̂vj,k “ ´

Dxψj,k

ĥj,k
,

which clearly satisfy the following discrete analogue of (2.3a):

Dx

`

ĥj,k ˆ̂uj,k
˘

`Dy

`

ĥj,k ˆ̂vj,k
˘

“ 0.

Example 1—Stationary Vortex with Opεq Velocity Fields

In this example we consider a stationary vortex described by the following initial conditions:

hpr, 0q “ 1` ε2

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

5

2
p1` 5ε2

qr2, r ď
1

5
1

10
p1` 5ε2

q ` 2r ´
3

10
´

5

2
r2
` ε2

„

4 lnp5rq `
7

2
´ 20r `

25

2
r2



,
1

5
ă r ă

2

5
,

1

5
p1´ 10ε2

` 20ε2 ln 2q, r ě
2

5
,

upx, y, 0q “ ´εyγprq, vpx, y, 0q “ εxγprq, γprq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

5, r ď
1

5
,

2

r
´ 5,

1

5
ă r ă

2

5
,

0, r ě
2

5
,

where r :“
a

x2 ` y2. The bottom topography is flat and Zpx, yq ” 0.

We begin with the large Froude number ε “ 1 and compute the solutions until the final time
t “ 80. The snapshots of h at t “ 10, 50 and 80 computed by the NEW and OLD schemes are
shown in Figure 4.1. As one can clearly see, the numerical solution computed by the OLD scheme
significantly dissipates in time, while the NEW scheme preserves the initial solution shape of h.
This demonstrates the importance of the WB property of the NEW scheme.

We proceed by testing both schemes in the cases of small Froude numbers ε “ 10´p for p “ 1,
2, 3 and 4. We run the simulations until the final times t “ 160, 240, 320 and 480, respectively. In
Figures 4.2–4.5, we plot the water depth h at different times. These results show that the NEW
scheme clearly outperforms the OLD one for a wide range of ε.
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Figure 4.1: Example 1: Front view of h for ε “ 1 computed by the NEW (top row) and OLD (bottom
row) schemes.

Figure 4.2: Example 1: The same as Figure 4.1, but for ε “ 10´1.

Example 2—Stationary Vortex with Op1q Velocity Fields

In this example we consider another stationary vortex, which can be described by the following
initial data:

hpr, 0q “ 1` ε

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

5

2
p1` 5εqr2, r ď

1

5
1

10
p1` 5εq ` 2r ´

3

10
´

5

2
r2
` ε

„

4 lnp5rq `
7

2
´ 20r `

25

2
r2



,
1

5
ă r ă

2

5
,

1

5
p1´ 10ε` 20ε ln 2q, r ě

2

5
,
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Figure 4.3: Example 1: The same as Figure 4.1, but for ε “ 10´2.

Figure 4.4: Example 1: The same as Figure 4.1, but for ε “ 10´3.

upx, y, 0q “ ´yγprq, vpx, y, 0q “ xγprq, γprq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

5, r ď
1

5
,

2

r
´ 5,

1

5
ă r ă

2

5
,

0, r ě
2

5
.

The bottom topography is flat and Zpx, yq ” 0.

We note that even though the initial conditions in Examples 1 and 2 are similar, the scaling in
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Figure 4.5: The same as Figure 4.1, but for ε “ 10´4.

the current example makes the problem computationally more challenging. As εÑ 0, the steady
state in Example 1 approaches a “lake at rest” equilibrium, while in the present test the magnitude
of the velicities remains Op1q. Moreover, we need to exactly resolve a “moving water” equilibria.
Figures 4.6–4.8, where we plot time evolution of h computed by the NEW and OLD schemes
at t “ 10, 30 and 60 for ε “ 10´1, 10´2 and 10´4 show that the NEW scheme still accurately
preserves the structure of the vortex and its advantage over the OLD scheme is now even more
pronounced than in Example 1.

Example 3—Small Perturbation of a Stationary Vortex over a Nonflat Bottom

In the final example we test the ability of the proposed WB-AP scheme to accurately capture a
small perturbation of a stationary vortex and to handle a nonflat bottom topography.

We first consider a stationary vortex with

wpr, 0q “ 1` ε

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

5

2
p1` 5εqr2, r ď

1

5
1

10
p1` 5εq ` 2r ´

3

10
´

5

2
r2
` ε

„

4 lnp5rq `
7

2
´ 20r `

25

2
r2



,
1

5
ă r ă

2

5
,

1

5
p1´ 10ε` 20ε ln 2q, r ě

2

5
,

where wpr, 0q “ hpr, 0q`Zpx, yq and the bottom topography consists of an elliptical shaped hump:

Zpx, yq “
1

2
e´20rpx`0.1q2`y2s.

The initial velocities upx, y, 0q and vpx, y, 0q are the same as in Example 2.
We compute the numerical solution for ε “ 10´2 until the final time t “ 60. We plot the

snapshots (at t “ 10, 30 and 60) of the computed solutions (w “ h ` Z and h) in Figures 4.9
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Figure 4.6: Example 2: Front view of h for ε “ 10´1 computed by the NEW (top row) and OLD
(bottom row) schemes.

Figure 4.7: Example 2: The same as Figure 4.6, but for ε “ 10´2.

and 4.10, respectively. As one can see, the proposed WB-AP scheme is capable of preserving the
stationary vortex over the nonflat bottom topography.

Finally, we superimpose a small perturbation around the core of the vortex onto the initial
water surface by replacing wpr, 0q with

rwpr, 0q “ wpr, 0q `

#

10´4, 0.04 ă r ă 0.16,

0, otherwise.
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Figure 4.8: Example 2: The same as Figure 4.6, but for ε “ 10´4.

Figure 4.9: Example 3: Front view of w “ h` Z computed by the NEW scheme.

Figure 4.10: Example 3 (stationary vortex): h computed by the NEW scheme.

In Figure 4.11 (left column), the water surface w, computed by the NEW scheme on the coarse
(80ˆ 80) and fine (480ˆ 480) meshes, are presented at the final time t “ 0.002.

In order to demonstrate the importance of the WB property we also compute the solutions on
the same meshes using the OLD scheme. The non-WB solutions are shown in the right column of
Figure 4.11. As one can clearly see, the solutions computed by the OLD scheme contain spurious
waves, not present in the solutions computed by the NEW scheme even when the coarse 80 ˆ 80
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mesh is used. In order to better see the waves generated by the small perturbation, we plot the
difference between the computed w and the background equilibrium wpr, 0q; see Figure 4.12. Once
again, we observe that while the NEW scheme captures the propagating perturbation in a clrealy
non-oscillatory manner and the resolution, as expected, increases when the mesh is refined (see the
left column of Figure 4.12), the results computed by the non-WB OLD scheme are unsatisfactory
even when the fine 480ˆ480 mesh is used. Indeed, as one can see in the right column of Figure 4.12,
the magnitude of the artificial waves is substantially larger than the magnitude of the perturbation
to be computed. This clearly indicates the advantage of the WB NEW scheme over the non-WB
OLD one.
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Figure 4.11: Example 3 (small Perturbation of a stationary vortex): w computed by the NEW (left
column) and OLD (right column) schemes using the coarse 80 ˆ 80 (top row) and fine 480 ˆ 480
(bottom row) meshes.
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Figure 4.12: Example 3 (small perturbation of a stationary vortex): w´wpr, 0q computed by the NEW
(left column) and OLD (right column) schemes using the coarse 80ˆ 80 (top row) and fine 480ˆ 480
(bottom row) meshes.

A Asymptotic Expansions of the Numerical Diffusion Terms

In this section we follow the approach used in [32] to investigate the leading order of the numerical
diffusion (3.15). Without loss of generality, we only consider the numerical diffusion of the x-
direction given by (3.15a), and expand the unknowns there using the asymptotic expansions given
by (3.26) and (3.27).

Then the leading order approximation of the first component of the numerical diffusion in
(3.15a) reads as

Dh1,n

j` 1
2
,k
“ αε

˜

ĥ
p0q

j` 1
2
,k

a`
j` 1

2
,k
pu1q

E,p1q
j,k ´ a´

j` 1
2
,k
pu1q

W,p1q
j`1,k

a`
j` 1

2
,k
´ a´

j` 1
2
,k

´
ĥ
p0q
j,kpu

1q
p1q,n
j,k ` ĥ

p0q
j`1,kpu

1q
p1q,n
j`1,k

2

¸

`

ε2a`
j` 1

2
,k
a´
j` 1

2
,k

a`
j` 1

2
,k
´ a´

j` 1
2
,k

´

ph1q
W,p2q
j`1,k ´ ph

1
q
E,p2q
j,k

¯

,

which consequently implies that the leading order of Dh1,n

j` 1
2
,k

is Opε2q as α “ εs, where s ě 1; see

Section 3.1.
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For the second and third components of the numerical diffusion (3.15a) we have

Dhu,n

j` 1
2
,k
“ 2εĥ

p0q

j` 1
2
,k
û
p0q

j` 1
2
,k

a`
j` 1

2
,k
pu1q

E,p1q
j,k ´ a´

j` 1
2
,k
pu1q

W,p1q
j`1,k

a`
j` 1

2
,k
´ a´

j` 1
2
,k

` εap1q,n
a`
j` 1

2
,k
ph1q

E,p2q
j,k ´ a´

j` 1
2
,k
ph1q

W,p2q
j`1,k

a`
j` 1

2
,k
´ a´

j` 1
2
,k

´ ε
´

ĥ
p0q
j,k û

p0q
j,kpu

1
q
p1q,n
j,k ` ĥ

p0q
j`1,kû

p0q
j`1,kpu

1
q
p1q,n
j`1,k

¯

´ εap1q,n
ph1q

p2q,n
j,k ` ph1q

p2q,n
j`1,k

2

`

εa`
j` 1

2
,k
a´
j` 1

2
,k

a`
j` 1

2
,k
´ a´

j` 1
2
,k

ĥ
p0q

j` 1
2
,k

´

pu1q
W,p1q
j`1,k ´ pu

1
q
E,p1q
j,k

¯

`Opε2
q

and

Dhv,n

j` 1
2
,k
“ εĥ

p0q

j` 1
2
,k

¨

˝û
p0q

j` 1
2
,k

a`
j` 1

2
,k
pv1q

E,p1q
j,k ´ a´

j` 1
2
,k
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W,p1q
j`1,k

a`
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2
,k
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2
,k

` v̂
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2
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2
,k
pu1q

E,p1q
j,k ´ a´
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2
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j` 1

2
,k
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j` 1
2
,k

˛

‚

´
ε

2

”

ĥ
p0q
j,k

´

û
p0q
j,kpv

1
q
p1q,n
j,k ` v̂

p0q
j,k pu

1
q
p1q,n
j,k

¯

` ĥ
p0q
j`1,k

´

û
p0q
j`1,kpv

1
q
p1q,n
j`1,k ` v̂

p0q
j`1,kpu

1
q
p1q,n
j`1,k

¯ı

`

εa`
j` 1

2
,k
a´
j` 1

2
,k

a`
j` 1

2
,k
´ a´

j` 1
2
,k

ĥ
p0q

j` 1
2
,k

´

pv1q
W,p1q
j`1,k ´ pv

1
q
E,p1q
j,k

¯

`Opε2
q.

Consequently, the leading order of both Dhu,n

j` 1
2
,k

and Dhv,n

j` 1
2
,k

is Opεq.

B Second-Order IMEX Fully Discrete WB-AP Scheme

In this section we describe how to increase the temporal order of accuracy of the presented WB-AP
scheme by implementing the second-order two-stage IMEX Runge-Kutta ARS(2,2,2) method.

The first stage of the ARS(2,2,2) method applied to the system (3.1) can be written as

ph1q˚ ´ ph1qn

∆t
` γα

“

phu1 ` h1ûqnx ` phv
1
` h1v̂qny

‰

` γp1´ αq
“

phuq˚x ` phvq
˚
y

‰

“ 0,

phuq˚ ´ phuqn

∆t
` γ

ˆ

2ĥûu1 ` ĥpu1q2 ` h1u2
`

ph1q2

2
`
`

ĥ` Z ´ aptq
˘

h1

ε2

˙n

x

` γ
`

ĥûv1 ` ĥu1v ` h1uv
˘n

y
`
γaptq

ε2
ph1q˚x “

γ

ε
phvq˚ ´

γ

ε
ĥv̂ `

γ

ε2
ph1q˚xZ,

phvq˚ ´ phvqn

∆t
` γ

ˆ

2ĥv̂v1 ` ĥpv1q2 ` h1v2
`

ph1q2

2
`
`

ĥ` Z ´ aptq
˘

h1

ε2

˙n

y

` γ
`

ĥûv1 ` ĥu1v ` h1uv
˘n

x
`
γaptq

ε2
ph1q˚y “ ´

γ

ε
phuq˚ `

γ

ε
ĥû`

γ

ε2
ph1q˚yZ,

(B.1)

where p¨q˚ is used to denote the quantities computed at the first stage. We notice that the system
(B.1) coincides with the system (3.6) with ∆t replaced with τ :“ γ∆t. Therefore, we obtain the
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following equations (similar to (3.21)–(3.23)) for ph1q˚, phuq˚ and phvq˚:

ph1q
˚

j,k `
pZj,k ´ a

nqp1´ αq

rKτ

r∆ ph1q
˚

j,k

`
1´ α

rKτ

”´

Dx ´
τ

ε
Dy

¯

Zj,kDx ph
1q
˚

j,k `

´

Dy `
τ

ε
Dx

¯

Zj,kDy ph
1q
˚

j,k

ı

“ ph1q
n

j,k ` τR
h1,n
j,k ´

∆tp1´ αq

Kτ

”

Dxpĥu
1
` h1uqnj,k `Dypĥv

1
` h1vqnj,k

`
τ

ε

´

Dxpĥv
1
` h1vqnj,k ´Dypĥu

1
` h1uqnj,k

¯

` τ
´
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j,k `DyRhv,n

j,k

¯

`
τ 2

ε

´

DxRhv,n
j,k ´DyRhu,n

j,k

¯ ı

,

phuq
˚

j,k “ ĥj,kûj,k `
1

Kτ

”

`

ĥu1 ` h1u
˘n

j,k
`
τ

ε

`

ĥv1 ` h1v
˘n

j,k
` τ

´
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τ

ε
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j,k

¯

`
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nqτ

ε2

´

Dx ph
1q
˚

j,k `
∆t

ε
Dy ph

1q
˚

j,k

¯ı

,

phvq
˚

j,k “ ĥj,kv̂j,k `
1

Kτ

”

`

ĥv1 ` h1v
˘n

j,k
´
τ

ε

`

ĥu1 ` h1u
˘n

j,k
` τ

´

Rhv,n
j,k ´

τ

ε
Rhu,n
j,k

¯

`
pZj,k ´ a

nqτ

ε2

´

Dy ph
1q
˚

j,k ´
τ

ε
Dx ph

1q
˚

j,k

¯ı

,

where rKτ :“ 1` pε{τq2 and Kτ :“ 1` pτ{εq2.
We then proceed with the second stage of the ARS(2,2,2) method, which gives

ph1qn`1 ´ ph1qn

∆t
` γp1´ αq

“

phuqn`1
x ` phvqn`1

y

‰

` p1´ γqp1´ αq
“

phuq˚x ` phvq
˚
y

‰

“
1

2γ
Rh1,˚

`

´

1´
1

2γ

¯

Rh1,n, (B.2a)

phuqn`1 ´ phuqn

∆t
`
γa˚

ε2
ph1qn`1

x `
p1´ γqan

ε2
phq1˚x ´

γ

ε
phvqn`1

´
1´ γ

ε
phvq˚ `

1

ε
ĥv̂
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1

2γ
Rhu,˚

`

´

1´
1

2γ

¯

Rhu,n
`
γ

ε
ph1qn`1

x Z `
1´ γ

ε
ph1q˚xZ, (B.2b)

phvqn`1 ´ phvqn

∆t
`
γa˚

ε2
ph1qn`1

y `
p1´ γqan

ε2
ph1q˚y `

γ

ε
phuqn`1
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ε
phuq˚ ´

1
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ĥû
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Rhv,˚

`

´
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1
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¯

Rhv,n
`
γ

ε
ph1qn`1

y Z `
1´ γ

ε
ph1q˚yZ. (B.2c)

Next, we solve equations (B.2b) and (B.2c) for phuqn`1 and phvqn`1 to obtain

phuqn`1
“ ĥû`

1

Kτ

"

ĥpu1qn ` ph1uqn `
τ

ε

`

ĥpv1qn ` ph1vqn
˘

`
pZ ´ a˚qτ

ε2

´

ph1qn`1
x `

τ

ε
ph1qn`1

y

¯
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ε

„

ĥpv1q˚ ` ph1vq˚ ´
τ

ε

`
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´
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¯


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`
∆t
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*
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"
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`
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¯
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´
∆t´ τ
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„
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´
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´
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¯

*

.

Hereafter, we differentiate equations (B.3a) and (B.3b) with respect to x and y, respectively,
and substitute the resulting equations into (B.2a). This yields the following elliptic equation for
ph1qn`1:

ph1qn`1
`
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εKτ

"

1

ε

”

pZ ´ anq
`

ph1q˚xx ` ph
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1
` h1vq˚y

ı

*
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(B.4)

Finally, we proceed as in Section 3.4 and compute the nonstiff flux terms Rh1,n, Rhu,n, Rhv,n Rh1,˚,
Rhu,˚ and Rhv,˚ in equations (B.3) and (B.4) using the CU numerical flux from Section 3.3 and
discretize the spatial derivatives in (B.4) using the standard second-order central differences Dx
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and Dy defined in (3.17). This results in

ph1q
n`1
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r∆ ph1q
n`1

j,k

`
1´ α

rKτ

”´

Dx ´
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´
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˚
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˚
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(B.5)

Once the numerical solution ph1q
n`1

j,k is obtained by solving the elliptic equation (B.5), we substitute
it into equations (B.3a) and (B.3b) discretized using the standard central differences and obtain
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`
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j,k `

τ

ε
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¯

*

and

phvq
n`1

j,k “ ĥj,kv̂j,k `
1

Kτ

"

`

ĥv1 ` h1v
˘n

j,k
´
τ

ε

`

ĥu1 ` h1u
˘n
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`
pZj,k ´ a

˚qτ

ε2

´

Dyph
1
q
n`1
j,k ´

τ

ε
Dxph

1
q
n`1
j,k

¯

´
∆t´ τ

ε

„

`

ĥu1 ` h1u
˘˚

j,k
`
τ

ε

`

ĥv1 ` h1v
˘˚

j,k
´
Zj,k ´ a

n

ε

´

Dyph
1
q
˚
j,k ´

τ

ε
Dxph

1
q
˚
j,k

¯



`
∆t

2γ

´

Rhv,˚
j,k ´

τ

ε
Rhu,˚
j,k

¯

`∆t
´

1´
1

2γ

¯´

Rhv,n
j,k ´

τ

ε
Rhu,n
j,k

¯

*

.
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step finite volume methods for low Froude number shallow water flows, Commun. Comput.
Phys., 16 (2014), pp. 307–347.
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