POSITIVITY OF BOUNDARY INTERSECTIONS OF COMPLEX CURVES

Sergei Ivashkovich

(University of Lille)

Abstract: Let an almost complex structure J of class \mathcal{C}^1 in a neighborhood of the origin in \mathbb{R}^{2n} be given, $n \geq 2$. Let furthermore $0 \in W$ be a germ of a J-totally real submanifold of real dimension n and of class \mathcal{C}^2 . After an appropriate \mathcal{C}^2 -smooth coordinate change we can assume wlg that for an appropriate neighborhood B of zero we have that $(B, W \cap B) = (\mathbb{R}^{2n}, \mathbb{R}^n)$ and $J|_{\mathbb{R}^n} = J_{st}$. Here J_{st} stands for the standard complex structure of \mathbb{C}^n . Such coordinate change we shall call a **redressing map**. Denote by $\Delta^+ := \{\zeta \in \Delta : \Im \zeta \geq 0\}$ the upper half-disk and by $\beta_0 := (-1,1)$ its edge. Let a J-holomorphic map $u: (\Delta^+, \beta_0, 0) \to (\mathbb{R}^{2n}, \mathbb{R}^n, 0)$ be given, assume it is continuous up to β_0 . We shall call such u a J-complex half-disk attached to W. It is not difficult to prove that there exist a $\mu \in \mathbb{N}$ such that

$$u(\zeta) = v_0 \zeta^{\mu} + O(|\zeta|^{\mu+\alpha})$$
 with $v_0 \neq 0$.

We shall call v_0 the **tangent vector** to u at zero and the number μ we shall call the **order of vanishing** of u at zero. This μ doesn't depend on the redressing map. Making a reflection with respect to $W = \mathbb{R}^n$, i.e., setting

$$\tilde{u}(\zeta) = \begin{cases} \frac{u(\zeta)}{u(\overline{\zeta})} & \text{if } \Im \zeta \ge 0\\ \frac{1}{u(\overline{\zeta})} & \text{if } \Im \zeta < 0, \end{cases}$$

we can extend u to Δ as a \mathcal{C}^{α} -regular map. Now let $u_1, u_2 : (\Delta^+, \beta_0, 0) \to (\mathbb{R}^4, \mathbb{R}^2, 0)$ be two J-complex disks attached to W which intersect at zero. We define the boundary intersection index of u_1 and u_2 at zero as the intersection number at zero of their extensions by reflection, and denote this index as $\operatorname{ind}_0^b(u_1, u_2)$. Our goal is present the following

Theorem 1.Let J be a C^1 -regular almost-complex structure on \mathbb{R}^{2n} such that $J|_{\mathbb{R}^n} = J_{st}$ and let $u_i : (\Delta^+, \beta_0, 0) \to (\mathbb{R}^4, \mathbb{R}^2, 0)$ be two J-complex half-disks such that one is not a reparameterization of another. Then their boundary intersection index is correctly defined and satisfies

$$\operatorname{ind}_{0}^{b}(u_{1}, u_{2}) \geq \mu_{1} \cdot \mu_{2},$$

where μ_i is the order of vanishing of u_i at zero, i = 1, 2.

Remark. To our best knowledge this result is new even for integrable J unless W is supposed to be real analytic.