THE AX-LINDEMANN-WEIERSTRASS THEOREM FOR QUOTIENTS OF BOUNDED SYMMETRIC DOMAINS BY ARBITRARY COCOMPACT LATTICES

Ngaming Mok

(University of Hong Kong)

Abstract: Let $\Omega \in \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsion-free cocompact lattice. Define $X_{\Gamma} :=$ Ω/Γ , which carries naturally the structure of a quasi-projective manifold, and write $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset in the sense that Z is an irreducible component of $Z' \cap \Omega$ for some affine-algebraic subset $Z' \subset \mathbb{C}^N$. When $\Gamma \subset \operatorname{Aut}(\Omega)$ is an *arithmetic* lattice, the Ax-Lindemann-Weierstrass theorem of Klingler-Ullmo-Yafaev (2016) says that the Zariski closure $Y := \overline{\pi(Z)}^{\text{Zar}}$ of $\pi(Z) \subset X_{\Gamma}$ in X_{Γ} is necessarily a totally geodesic subset. Mok-Pila-Tsimerman (2019) proved the Ax-Schanuel theorem for arithmetic lattices Γ , which is a theorem on the transcendence degrees of function fields obtained by restricting Harish-Chandra coordinates and Γ -equivariant modular functions on Ω to germs of complex-analytic subvarieties (V; x) on Ω , a result superseding Ax-Lindemann-Weierstrass. The existing proofs of both Ax-Lindemann-Weierstrass and Ax-Schanuel for arithmetic lattices Γ require the use of the counting theorem of Pila-Wilkie in o-minimal geometry, a theory belonging to model theory in mathematical logic. The counting theorem is not applicable in the general case of nonarithmetic lattices, e.g., for most lattices in $Aut(\Omega)$ when Ω is reducible and it has 1-dimensional irreducible factors.

It is desirable to remove the arithmeticity assumption for lattices $\Gamma \subset \operatorname{Aut}(\Omega)$ in Ax-type results. While the general case of Ax-Schanuel remains difficult, we are now able to prove the Ax-Lindemann-Weierstrass theorem for arbitrary cocompact lattices Γ . A special case of a uniformization theorem of Chan-Mok (2022) proves total geodesy of $Y \subset X_{\Gamma}$ when $\pi(Z) \subset X_{\Gamma}$ is Zariski closed so that $Y = \pi(Z)$. For Ax-Lindeman-Weierstrass in general we extend the foliation-theoretic approach of Mok (2019) which established the theorem for all lattices in the rank-1 case. By applying the rescaling method to a certain subvariety $Z' \subset \Omega$ derived from some foliation we show that Z' decomposes into a union of holomorphic isometric copies S_t of complex unit balls into Ω , noting that these are subsets of fibers of some canonical map associated to an inverse partial Cayley transform. The latter allows us to generate a one-parameter group T of translations on Z', which serves as the starting point for proving a critical intermediate result asserting the normality of a maximal algebraic subgroup $H \subset \operatorname{Aut}(\Omega)$ leaving Z' invariant. Our proof also strengthens the result of Chan-Mok by requiring only that Z extends analytically beyond $\overline{\Omega}$ in place of requiring algebraicity of $Z \subset \Omega$.